Authors I. A. Kirichenko
Month, Year 06, 2018 @en
Index UDC 534.232
Abstract The paper considers the problem of estimating the effect of failure in the pumping elements of a parametric profilograph on the axial concentration coefficient. It is known that hydroacoustic methods for studying the seabed in the coastal ocean are a difficult task, for which solutions are used various approaches to building systems based on mono-, bi- or multi-static sonar configuration, the use of multi-frequency and wide-band acoustic systems. A promising tool for solving problems related to the study of the bottom structures of the coastal ocean is parametric sonar profilographs, which, in the range of the difference frequency wave of 1-10 kHz, have the advantage of penetrating into the bottom structures. Expansion of functional capabilities of parametric profilographs is possible through the use of synthesized apertures of hydroacoustic antennas. For a parametric sonar system with scanning space, the most promising is a two-dimensional antenna array, which emits two acoustic waves at pump frequencies. As a result of nonlinear interaction of acoustic waves with pump frequencies in an aqueous medium, a difference frequency wave is formed. A synthesized aperture in the form of two nested gratings consisting of 256 cells with elements arranged in a checkerboard pattern is considered as a model of a pumping antenna of a parametric profilograph. As an estimate of the change in the directional properties of the pumping antenna, the axial concentration coefficient characterizing the absolute value of the radiation intensity is also used. The cases of failure of 8, 16, 32, 64 and 128 antenna elements are considered. The dependences of the axial concentration coefficient on the angle of compensation when scanning in one and two planes obtained for the considered model of a pumping antenna of a parametric profilograph showed that with a decrease in the number of working antenna elements, the radiated power decreases in proportion to the number of failed elements, the side lobes increase, and the side field increases, which leads to a decrease in the axial concentration coefficient with an increase in the number of failed antenna array elements.

Download PDF

Keywords Parametric profilograph; hydroacoustic antenna; ultrasonic transducer; failure of the antenna element; axial concentration factor.
References 1. Rudnik P. Small signal detection in the DIMUS array, J. Acoust. Soc. Am., 1960, Vol. 32, No. 7, pp. 871-877.
2. Korneliussen R.J. Measurement and removal of echo integration noise, ICES Journal of Marine Science, 2000, No. 57, pp. 1204-1217.
3. MacLennan D.N. Acoustical measurement of fish abundance, J. Acoust. Soc. Am., 1990, Vol. 87, No. 1, pp. 1-15.
4. Maguer A., Fox W. L.J., Schmidt H., Pouliquen E., Bovio E. Mechanisms for subcritical penetration into a sandy bottom: Experimental and modeling results, J. Acoust. Soc. Am., 2000, Vol. 107, No. 3, pp. 1215-1225.
5. Greaves R.J., Stephen R.A. The influence of large–scale seafloor and average bottom sound speed on low-grazing–angle monostatic acoustic scattering, J. Acoust. Soc. Am., 2003, Vol. 113, No. 5, pp. 2548-2561.
6. Furusaw M. Designing quantitative echo sounder, J. Acoust. Soc. Am., 1991, Vol. 90, No. 1, pp. 26-36.
7. Kirichenko I.A., Starchenko I.B., Sakharov V.L., Golosov P.S. Adaptivnoe upravlenie gidroakusticheskimi sistemami [Adaptive control of hydroacoustic systems], Prikaspiyskiy zhurnal: upravlenie i vysokie tekhnologii [Caspian Journal: management and high technology], 2013, No. 3 (23), pp.26-33.
8. Kirichenko I.A., Starchenko I.B. Adaptivnye gidroakusticheskie sredstva: sostoyanie i perspektivy razvitiya [Adaptive sonar tools: state and development prospects], Izvestiya TuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 9 (146), pp. 20-24.
9. Gonchar A.I., Fedoseenkov S.G., Shundel' A.I. Aspekty tekhnologii avtomatizirovannoy distantsionnoy profil'noy gruntovoy s’’emki morskogo dna [Aspects of technology of automated remote profile soil survey of the seabed], Gidroakusticheskiy zhurnal (Problemy, metody i sredstva izucheniya Mirovogo okeana) [Hydroacoustic journal (Problems, methods and tools for studying the World Ocean)], 2011, No. 8, pp. 63-67.
10. Marszal J. Digital signal processing applied to the modernization of Polish Navy sonars, Polish maritime research, 2014, Vol. 21, No. 2, pp. 65-75.
11. Rimskiy-Korsakov N.A., Russak Ju.S., Tihonova N.F. Metodicheskie osnovy formirovaniya apparaturno-programmnykh kompleksov dlya podvodnykh issledovaniy gidrolokatsionnymi metodami [Methodical foundations of the formation of hardware-software complexes for underwater research using sonar methods], Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy [International Journal of Applied and Fundamental Research], 2018, No. 5, pp. 287-293.
12. Voronin V.A., Pivnev P.P., Tarasov S.P. Shirokopolosnye gidroakusticheskie antenny sistem ekologicheskogo monitoringa vodnoy sredy i pridonnykh osadochnykh porod [Broadband hydroacoustic antennas of environmental monitoring systems for the aquatic environment and bottom sedimentary rocks], Inženernyy vestnik Dona [Engineering Bulletin of the Don], 2015, No. 4. Available at:
13. Grinyuk A.V., Kravchenko V.N., Trofimov A.T., Trusova O.I., Tikhomirov M.M., Khil'ko A.A., Malekhanov A.I., Kovalenko V.V., Khil'ko A.I. Vysokochastotnoe akusticheskoe nablyudenie neodnorodnostey v melkom more s nerovnym dnom v prisutstvii sil'noy reverberatsii [High-frequency acoustic observation of inhomogeneities in a shallow sea with an uneven bottom in the presence of strong], Akusticheskiy zhurnal [Acoustic Journal], 2011, Vol. 57, No.5, pp. 642-648.
14. Coraluppi S. Multistatic sonar localization, IEEE J. Ocean. Eng., 2006, Vol. 31, No. 4, pp. 964-974.
15. Voronin V.A., Tarasov S.P., Timoshenko V.I. Gidroakusticheskie parametricheskie sistemy [Hydroacoustic parametric systems], Rostov-on-Don: Rostizdat, 2004, 400 p.
16. Starchenko I., Kirichenko I. Investigation of fluctuations of difference frequency wave sound field of parametric array in non-stationary medium, Forum Acusticum Budapest 2005: 4th European Congress on Acustics, 2005, pp. 1415-1420.
17. Edwards J.R., Schmidt H., LePage K. Bistatic synthetic aperture target detection and imaging with an AUV, IEEE Journal of oceanic engineering, 2001, Vol. 26, No. 4, pp. 690-699.
18. Schmidt H., Lee J. Physics of 3-d scattering from rippled seabeds and buried targets in shallow water, J. Acoust. Soc. Am., 1999, Vol. 105, No. 3, pp. 1605-1622.
19. Kirichenko I.A., Raskita M.N. Vliyanie konstruktsii preobrazovatelya nakachki na kharakteristiku napravlennosti parametricheskoy antenny [The influence of the design of the pump transducer on the directivity characteristic of a parametric antenna], Izvestiya TRTU [Izvestia TSURE], 2004, No. 5 (40), pp. 43-46.
20. Smaryshev M.D. Napravlennost' gidroakusticheskikh antenn [Direction of hydroacoustic antennas]. Leningrad: Sudostroenie, 1973, 275 p.
21. Samoylov L.K. Elektronnoe upravlenie kharakteristikami napravlennosti antenn [Electronic control of antenna directivity]. Leningrad: Sudostroenie, 1987, 280 p.
22. Kirichenko I.A., Pivnev P.P. Upravlenie napravlennymi svoystvami akusticheskikh antenn dlya distancionnogo zondirovaniya shel'fa okeana [Controlling the directional properties of acoustic antennas for remote sensing of the ocean shelf], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 9 (122), pp. 67-72.
23. Guney K., Durmus A., Basbug S. Antenna array synthesis and failure correction using differential search algorithm, International Journal of Antennas and Propagation, 2014, Vol. 2014. Available at: (accessed 15 December 2018).

Comments are closed.