Authors D.G. Mitrofanov, S.V. Shishkov
Month, Year 01, 2018 @en
Index UDC 623.418
Abstract The problem of small-sized unmanned aerial vehicles (UAV) detection is considered. The complexity of modern UAV detection using radar station (RS) is that their launch is performed in the close vicinity of the front edge, and flight passes at low altitude. In addition, they have a low reflectivity in view of their small size. In this case, the traditional use of optical and opto-electronic devices provided today in the narrow angular sectors (with a narrow field of view) only, that even when complexation with the information of air defense RS does not provide efficiency in conditions of enemy use of electronic warfare and unpredictable changes in tactics of using UAV. The study is devoted to the development of a new multi-channel method of detecting UAV in the passive and active modes of detectors’ operation. Particular tasks: to study the characteristics of UAV, the order of their application, the possibility of detecting them in a circular view by meters operating in different wave ranges; to offer algorithms of multi-channel detection of UAV; determine the procedure for processing the received radio and video information. On the basis of the conducted research: the UAV classification was carried out, the order of their application, the possibility of their detection in different wave ranges was studied; a new approach to creating a multichannel method of detecting UAV and a corresponding device combining information of the optical, sound and radar wave ranges is proposed; UAV identification algorithm of the optical wavelength range, based on proximity measures establishing UAV binary image with the reference images obtained in the 3-D modeling environment is developed. The use of the proposed innovative approach to the detection and identification of UAV helps choosing the most effective means of dealing with them, which can reduce the threat of unauthorized terrorist UAV application.

Download PDF

Keywords Method; device; detection; small unmanned aerial vehicles; circular survey.
References 1. Roberge V.; Tarbouchi, M., Labonte G. Comparison of Parallel Genetic Algorithm and Particle Swarm Optimization for Real-Time UAV Path Planning, IEEE Transactions on Industrial Informatics, 1 February 2013, No. 9 (1), pp. 132-141.
2. Floreano, Dario; Wood, Robert J. Science, technology and the future of small autonomous drones, Nature, 521 (7553), pp. 460-466.
3. Kennedy C., Rogers J.I. Virtuous drones?, The International Journal of Human Rights, 2015, No. 19 (2), pp. 211-227.
4. Bakaneev S.A. Robototekhnicheskie kompleksy voennogo naznacheniya dlya raketnykh voysk i artillerii Sukhoputnykh voysk [Robotic technical complexes for military purposes for missile troops and artillery of the Ground Forces], Robototekhnika [Robototechnics], 2017, No. 2 (44), pp. 7-14.
5. Zavodchenkov V. Terroristy ustroili v Sirii voynu dronov [Terrorists staged a war of drones in Syria]. Available at: https:// /video/ search?filmId=14348528443641910193-sas1-5624-V.
6. David G. Lowe Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, November 2004, Vol. 60, Issue 2.
7. Trimble S. DARPA selects two firms to compete for sea-based UAV, Flightglobal, Reed Business Information, retrieved 27 March 2015.
8. Fasano G., Accardo D., Anna E., Moccia A.Radar/electro-optical data fusion for non-cooperative UAS sense and avoid, Aerospace Science and Technology, 2015, Vol. 46, pp. 436-450.
9. Yanguo S; Huanjin W. Design of Flight Control System for a Small Unmanned Tilt Rotor Aircraft, Chinese Journal of Aeronautics, 2009, No. 22 (3), pp. 250-256.
10. Shishkov S.V. Metod obnaruzheniya MBLA [The method of detection of MBLA]. Patent RF No. 2559332. MPK G01S 17/00. Declared 25.02.2014. Publ. 10.08.2015. Bull. No. 22.
11. Mitrofanov D.G., Gavrilov A.D., Mayburov D.G., Kotov D.V., Zlobinova M.V. Sposob protivodeystviya vypolneniyu zadach bespilotnym letatel'nym apparatom [The way to counteract the tasks of an unmanned aerial vehicle]. Patent RF № 2497063. MPK F41H11/04. Declared 15.10.2012. Publ. 27.10.2013. Bull. No. 30.
12. Studitskiy A.S., Kekin A.G. Povyshenie effektivnosti integrirovannykh mnogokanal'nykh nablyudatel'nykh sistem [Increasing the efficiency of integrated multi-channel observational systems], Pribory [Devices], 2013, No. 9, pp. 52-55.
13. Mitrofanov D.G., Zlobinova M.V. Sovershenstvovanie protsessa upravleniya kompleksom matematicheskikh modeley v sistemakh podderzhki prinyatiya resheniy real'nogo vremeni [Perfection of the process of managing a complex of mathematical models in real-time decision-making support systems], Trudy Voenno-kosmicheskoy akademii im. A.F. Mozhayskogo [Proceedings of the Military Space Academy. A.F. Mozhaysky]. Saint Petersburg, 2014,
No. 645, pp. 44-51.
14. Godunov A.I. Vzaimosvyaz' mashinnogo (tekhnicheskogo) zreniya s komp'yuternym zreniem pri identifikatsii MBLA [Interrelation of machine (technical) vision with computer vision in the identification of MBLA], Nadezhnost' i kachestvo [Reliability and quality]. Penza: Izd-vo Penz. GU, 2015, Vol. 1, pp. 213-217.
15. Mitrofanov D.G., Perekhozhev V.A. Variant postroeniya dvukhurovnevogo neyrosetevogo identifikatora letatel'nykh apparatov [Variant of construction of a two-level neural network identifier of aircraft], Izvestiya instituta inzhenernoy fiziki [Izvestiya Institute of Engineering Physics], 2014, Vol. 1, No. 1, pp. 47-52.
16. Godunov A.I., Shishkov S.V., Yurkov N.K. Kompleks obnaruzheniya i bor'by s malogabaritnykh bespilotnykh letatel'nykh apparatov [Complex for detection and control of small unmanned aerial vehicles], Sb. trudov mezhdunarodnogo simpoziuma «Nadezhnost' i kachestvo – 2014» [Collected Works of the International Symposium "Reliability and Quality - 2014"]. Penza: Izd-vo Penz. GU, 2014, Vol. 1, pp. 90-95.
17. Godunov A.I., Shishkov S.V., Bikeev R.R. Model' dvizheniya malogabaritnogo bespilotnogo letatel'nogo apparata v prostranstve [Model of motion of a small unmanned aerial vehicle in space], Problemy avtomatizatsii i upravleniya v tekhnicheskikh sistemakh [Problems of Automation and Control in Technical Systems]. Penza: Izd-vo PGU, 2015, Vol. 1, pp. 328-331.
18. Godunov A.I., Shishkov S.V., Bikeev R.R. Model' opredeleniya geometricheskikh izmeneniy na kadrakh videoposledovatel'nosti dlya obnaruzheniya malogabaritnykh bespilotnykh letatel'nykh apparatov [Model for the determination of geometric changes on the frames of the video sequence for the detection of small unmanned aerial vehicles], Problemy avtomatizatsii i upravleniya v tekhnicheskikh sistemakh [Problems of automation and control in technical systems]. Penza: Izd-vo PGU, 2015, Vol. 1, pp. 331-335.
19. Shishkov S.V., Sinyaev E.G., Petrenko V.I. Algoritm prinyatiya resheniy po dostovernomu obnaruzheniyu malogabaritnykh bespilotnykh letatel'nykh apparatov protivnika [Algorithm for making decisions on the reliable detection of small unmanned aerial vehicles of the enemy], Ser. 1. Nauka i voennaya bezopasnost' [Journal Series 1 Science and Military Security], 2015, No. 3 (3), pp. 10-16.
20. Shishkov S. V., Chernyy S.V., Muzaui K. Algoritm opredeleniya geometricheskikh izmeneniy na kadrakh videoposledovatel'nosti dlya obnaruzheniya malogabaritnykh bespilotnykh letatel'nykh apparatov [Algorithm for determining geometric changes on frames of a video sequence for the detection of small unmanned aerial vehicles]: Vol. 1, Sb. XVII Vserossiyskoy nauchno-prakticheskoy konferentsii «Aktual'nye problemy zashchity i bezopasnosti» [The collection of the XVII All-Russian Scientific and Practical Conference "Actual problems of protection and safety "]. Saint Petersburg: RARAN, 2014, pp. 275-281.
21. Shishkov S.V. Malogabaritnyy robotizirovannyy kompleks dlya bor'by s malogabaritnymi bespilotnymi letatel'nymi apparatami [A small-sized robotic complex for combating small unmanned aerial vehicles]. Patent RF No. 149412. MPK F41H 11/02, F41H 13/00. Declared 25.02.2014. Publ. 27.12.2014. Bull. № 36.

Comments are closed.