Article

Article title SYNTHESIS METHODS OF FAULT-TOLERANT COMBINATION CMOS CIRCUITS, PROVIDING AUTOMATIC CORRECTION OF ERRORS
Authors A. L. Stempkovskiy, D. V. Telpuhov, T. D. Zhukova, S. I. Gurov, R. A. Solovyev
Section SECTION IV. COMPUTER SCIENCE AND ELECTRONICS
Month, Year 07, 2017 @en
Index UDC 621.3.049.771.14
DOI
Abstract Currently, the urgency of research in the field of improving the reliability of the microelectronic systems is steadily increasing. It happens due to the continuing miniaturization, which leads to a reduction in the threshold of impact, necessary for the occurrence of soft and hard errors. One of the possible solutions to this problem can be the approach related to the correction of errors occurring during the work process. To solve the problem of automatic error correction, arising from the faults in combinational circuits, there is an approach associated with the use of redundant coding. Building a self-checking circuit is the traditional approach for the solution of the problem. Self-correction is provided by creating, in addition to the main functional scheme, a monitoring and detecting one, often resulting in a too long delay in obtaining the result. This direction is very promising and is now the subject of intensive research, but currently there is no clearly formulated principles for designing such schemes. In this article the basic principles of self-correcting schemes based on methods of redundant coding are considered, various error-correcting codes in the field of self-correcting combinational circuits are analyzed, and general recommendations on the use of error-correcting codes with respect to the problem of constructing fault-tolerant combinational circuits are developed. The article also offers a method for synthesizing fault-tolerant CMOS circuits based on Hamming bit spaces. The method consists in replacing the elementary Boolean gates with their fault-tolerant analogs, providing correction of errors on each gate. The proposed method exploits the idea of selective protection at the level of individual gates, but it has significant differences from simple elementwise TMR. We also carried out computational experiments and compared the method with triple modular redundancy for the case of single and multiple failures. Method for synthesizing fault-tolerant CMOS circuits based on Hamming bit spaces demonstrated a high level of failure stability with a significant increase in hardware costs.

Download PDF

Keywords Fault tolerance; error correction; combinational circuits.
References 1. Huang H.-M., Wen H.-P.W. Fast-yet-accurate statistical soft-error-rate analysis considering full-spectrum charge collection, IEEE Design & Test, March/April 2013, pp. 77-86.
2. Telets V., Tsybin S., Bystritskiy A., Pod"yapol'skiy S. PLIS dlya kosmicheskikh prime-neniy. Arkhitekturnye i skhemotekhnicheskie osobennosti [FPGAs for space applications. Architec-tural and circuit features], Elektronika: nauka, tekhnologiya, biznes [Electronics: Science, Technology, Business], 2005, No. 6, pp. 44-48.
3. Gurov S.I. Spektral'nyy R-kod s proverkami na chetnost' [Spectral R-code with the parity check], Prikladnaya matematika i informatika: Trudy fakul'teta Vychislitel'noy matematiki i kibernetiki [Applied mathematics and computer science: Proceedings of the faculty of Computational mathematics and Cybernetics]. Moscow: Izd-vo fakul'teta VMK MGU, 2016 (in press).
4. Khetagurov Ya.A., Rudnev Yu.P. Povyshenie nadezhnosti tsifrovykh ustroystv metodami izbytochnogo kodirovaniya [.Improving the reliability of digital devices methods of redundant coding]. Moscow: Energiya, 1974, 270 p.
5. Ivas'kov Yu.L., Ryakin O.M. Ob odnoy informatsionnoy modeli nenadezhnykh kombinatsionnykh skhem [About one information model unreliable combinational circuits], Kibernetika [Cybernetics], 1966, Vol. 2, No. 6, pp. 41-46.
6. Sogomonyan E.S., Slabakov E.V. Samoproveryaemye ustroystva i otkazoustoychivye sistemy [Samoupravlenie devices and fault-tolerant systems]. Moscow: Radio i svyaz', 1989, 208 p.
7. Varshavskiy V.I., Rozenblyum L.Ya., Taubin A.R. Polnost'yu samoproveryaemye asinkhronnye kombinatsionnye skhemy i svoystvo inditsiruemosti [Fully samoupravlenie asynchronous combinational circuit and the property of indeterminate], Avtomatika i telemekhanika [Automatics and telemechanics], 1982, Issue 5, pp. 138-146.
8. Shcherbakov N.S. Samokorrektiruyushchiesya diskretnye ustroystva [Discrete self-correcting device]. Moscow: Mashinostroenie, 1975, 216 p.
9. Kots Ch. Kody s ispravleniem oshibok i ikh realizatsiya v tsifrovykh sistemakh [Codes with error correction and their implementation in digital systems], V kn.: Metody vvedeniya izbytochnosti dlya vychislitel'nykh sistem [In book: Methods of introducing redundancy for computer systems], ed. by V.S. Pugacheva. Modcow: Sov. radio, 1966, pp. 179-229.
10. Poolakkaparambil M., Mathew J. BCH code based multiple bit error correction in finite field multiplier circuits, ISQED, 2011, pp. 1-6.
11. Gavrilov S.V., Gurov S.I., Zhukova T.D., Ryzhova D.I. Primenenie teoriya kodirovaniya dlya povysheniya nadezhnosti kombinatsionnykh skhem [Application of coding theory to improve the reliability of combinational circuits], Informatsionnye tekhnologii [Information Technology], 2016, No. 12, pp. 931-937.
12. Gavrilov S.V., Gurov S.I., Zhukova T.D., Ryzhova D.I., Tel'pukhov D.V. Metody povysheniya sboeustoychivosti kombinatsionnykh IMS metodami izbytochnogo kodirovaniya [Methods of increasing the failure tolerance of the matching IC methods of redundant coding], Prikladnaya matematika i informatika: Trudy fakul'teta Vychislitel'noy matematiki i kibernetiki [Applied mathematics and computer science: Proceedings of the faculty of Computational mathematics and Cybernetics]. Moscow: Izd-vo fakul'teta VMK MGU, 2016, No. 53, pp. 93-102.
13. Mahesh Poolakkaparambil, Jimson Mathew and Abusaleh Jabir. Multiple Bit Error Tolerant Galois Field Architectures Over GF (2m), Electronics, 2012, No. 1, pp. 3 22.
14. Hsiao M.Y. A class of optimal minimum odd-weight-column SEC-DED codes, IBM J. Res. Develop., 1970, Vol. 14, pp. 395-401.
15. Petrov K.A. Elementy pomekhoustoychivogo kodirovaniya netsiklicheskogo tipa submikronnykh KMOP operativnykh zapominayushchikh ustroystv: diss. … kand. tekhn. nauk [Elements of a non-cyclic error-correcting coding type submicron CMOS RAM. Cand. of eng. sc. diss]. Natsional'nyy issledovatel'skiy yadernyy universitet «MIFI», 2015.
16. Shcherbakov N.S. Dostovernost' raboty tsifrovykh ustroystv [The reliability of digital devices]. Moscow: Mashinostroenie, 1989, 224 p.
17. Kulik A.S. Elementy teorii ratsional'nogo upravleniya ob"ektami [Elements of the theory of rational management of objects]. Khar'kov: KhAI, 2016, 255 p.
18. Savchenko Yu.G. Ispol'zovanie estestvennoy informatsionnoy izbytochnosti dlya avtokorrektsii oshibok v logicheskikh setyakh [The use of the natural information redundancy for auto-correction of errors in the logical networks], Kibernetika [Cybernetics], 1970, No. 6, pp. 85-87.
19. Yudintsev V. Radiatsionno-stoykie integral'nye skhemy. Nadezhnost' v kosmose i na zemle [Radiation-resistant integrated circuits. Reliability in space and on the ground], Elektronika: nauka, tekhnologiya, biznes [Electronics: Science, Technology, Business], 2007, Issue 5, pp. 72-77.
20. Popovich A. Topologicheskaya norma i radiatsionnaya stoykost' [Topological norm and radiation resistance], Komponenty i tekhnologii [Components and Technologies], 2010, Issue
No. 110, pp. 100-102.
21. Kolesnik V.D., Mironchikov E.T. Kody s ispravleniem oshibok pri arifmeticheskikh operatsiyakh [Codes with error correction in arithmetic operations], Problemy peredachi informatsii [Problems of information transmission], 1965, Vol. 1, No. 3, pp. 20-28.
22. Alagoz B.B. Boolean Logic with Fault Tolerant Coding, OncuBilim Algorithm and Systems Labs., 2009, Vol. 09, Art.No:03
23. Rudell, Richard L. (1986-06-05), "Multiple-Valued Logic Minimization for PLA Synthesis", Memorandum No. UCB/ERL M86-65, Berkeley.
24. J. von Neumann. Probabilistic logic and the synthesis of reliable organisms from unreliable components, in: Automata Studies, C. E. Shannon and J. McCarthy (editors), Princeton Univ. Press, Princeton, N. J., 1954.

Comments are closed.