Article

Article title THE SEMANTIC SEARCH OF KNOWLEDGE IN THE ENVIRONMENT OF OPERATION OF INTERDISCIPLINARY INFORMATION SYSTEMS BASED ON ONTOLOGICAL APPROACH
Authors V. V. Bova, D. V. Leshchanov
Section SECTION II. ARTIFICIAL INTELLIGENCEAND FUZZY SYSTEMS
Month, Year 07, 2017 @en
Index UDC 002.53:004.89
DOI
Abstract One of the main functions of modern interdisciplinary information systems is the semantic search of knowledge elements from distributed sources. The main problem in the search and pro-cessing of knowledge lies in the ever increasing complexity of their identification and structuring with the aim of presenting it in a form that is accessible to understanding and further use. For its solution, a method is proposed for the formation of a multilevel ontological structure for the search and evaluation of the closeness of knowledge elements in ontologies of various functional domains, defined as a semantic network. The semantic model of search developed on its basis will allow to visually and compactly present the structure of semantic relations between functional areas of sources of knowledge with stable interdisciplinary connections. To describe the links between knowledge elements in distributed information arrays, it is suggested to use their semantic meta-descriptions, presented in terms of ontologies and search query terms. The method of optimization of the search model and evaluation of semantically close knowledge elements based on the clustering of semantic networks represented by graph models of the corresponding levels is considered: ontologies of functional subject areas, search images and semantic meta-descriptions of the terms of the ontology dictionary. Semantic meta-descriptions of terms (documents) are con-sidered as a set of concepts and relationships (sets of triplets) in a single model of representation of ontological knowledge. The method for assessing the relevance (semantic proximity) is based on the evaluation of the proximity of knowledge objects in the semantic network of documents and the semantic query network. To analyze the developed method, a series of computational experiments was carried out. The obtained data confirmed the theoretical significance and the prospects of the application of this method.

Download PDF

Keywords Information systems of semantic search; knowledge management system; semantic network; ontology; semantic meta-descriptions; clustering objects of knowledge; semantic similarity.
References 1. Castano S., Ferrara A., Montanelli S., Racca G. Semantic information interoperability in open networked systems, Proceedings оf the International Conference «SNW», 2004, pp. 215-230.
2. Kravchenko Y.A., Kursitys I.O., Bova V.V. Models for Supporting of Problem-Oriented Knowledge Search and Processing, Proceedings of the First International Scientific Conference «Intelligent Information Technologies for Industry», 2016, Vol. 1, pp. 287-297.
3. Kravchenko Y.A., Kuliev E.V., Kursitys I.O. Information’s semantic search, classification, structuring and integration objectives in the knowledge management context problems, Pro-ceeding of the 10th IEEE International Conference on «Application of Information and Com-munication Technologies», 2016, pp. 136-141.
4. Bova V.V., Kravchenko Y.A., Kureichik V.V. Development of distributed information systems: Ontological approach, Advances in Intelligent Systems and Computing, 2015, Vol. 349,
pp. 113-122.
5. Vagin V.N., Mikhaylov I.S. Razrabotka metoda integratsii informatsionnykh sistem na osnove metamodelirovaniya i ontologii predmetnoy oblasti [Development of the method of integration of information systems based on metamodelling and ontology of the subject domain], Programmnye produkty i sistemy [Software products and systems], 2008, pp. 22-26.
6. Bova V.V., Leshchanov D.V. O voprose integratsii resursov znaniy na osnove analiza i sinteza ontologiy [On the issue of integrating knowledge resources on the basis of analysis and syn-thesis of ontologies], Informatika, vychislitel'naya tekhnika i inzhenernoye obrazovaniye [In-formatics, Computer Science and Engineering Education], 2014, No. 3 (18), pp. 14-22.
7. Bova V.V. Kontseptual'naya model' predstavleniya znaniy pri postroenii intellektual'nykh informatsionnykh sistem [Conceptual model of knowledge representation in the constructing intelligent information systems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. En-gineering Sciences], 2014, No. 7 (156), pp. 109-117.
8. Nguen B.N., Tuzovskiy A.F. Obzor podkhodov semanticheskogo poiska [An overview of se-mantic search approaches], Izvestiya Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki [Izvestiya Tomsk State University of Control Systems and Radioelectronics], 2010, No. 2, pp. 234-237.
9. Nguen B.N., Tuzovskiy A.F. Model' informatsionnogo poiska na osnove semanticheskikh metaopisaniy [Model of information retrieval based on semantic meta descriptions], Upravlenie bol'shimi sistemami [Managing large systems], 2013, No. 41, pp. 51-92.
10. Bova V.V., Leshchanov D.V., Kravchenko D.Yu., Novikov A.A. Komp'yuternaya ontologiya: zadachi i metodologiya postroeniya [Computer ontology: objectives and methodology], Informatika, vychislitel'naya tekhnika i inzhenernoe obrazovanie [Information, Computing and Engineering Education], 2014, No.4 (19), pp. 18-24.
11. Kryukov K.V., Pankova L.A., Shipilina L.B. Mery semanticheskoy blizosti v ontologiyakh [Measures of semantic closeness in the ontology], Problemy upravleniya [Problems of Man-agement], 2010, No. 2, pp. 2-14.
12. Bova V.V., Zaruba D.V., Kureychik V.V. Evolyutsionnyy podkhod k resheniyu zadachi integratsii ontologiy [The evolutionary approach for ontologies integration problem], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 6 (167), pp. 41-56.
13. .Zhu H., Zhong J., Li J., Yu Y. An approach for semantic search by matching RDF graphs, Proceedings LAIRS Conference, 2012, pp. 450-454.
14. Gladkov L.A., Kureychik V.V., Kureychik V.M. Diskretnaya matematika: Teoriya grafov [Dis-crete mathematics: Graph theory]. Taganrog: Izd-vo TTI YuFU. 2010, 162 p.
15. Zaporozhets D.Yu., Kravchenko Yu.A., Lezhebokov A.A. Sposoby intellektual'nogo analiza dannykh v slozhnykh sistemakh [Methods data mining in complex systems], Izvestiya KBNTs RAN [izvestiya of Kabardino-Balkar Scientific Centre of the RAS], 2013, No. 3, pp. 52-56.
16. Berikov V.S., Lbov G.S. Sovremennye tendentsii v klasternom analize [Modern trends in cluster analysis], Vserossiyskiy konkursnyy otbor obzorno-analiticheskikh statey po prioritetnomu napravleniyu «Informatsionno-telekommunikatsionnye sistemy» [All-Russian competitive se-lection of survey and analytical articles on priority direction "Information-telecommunication systems"], 2008, 26 p.
17. Shevchenko I.V., Minashkin A.O., Osipchuk L.N. Evristicheskiy metod klasterizatsii v metricheskom prostranstve priznakov [A heuristic method of clustering in a metric space of at-tributes], Novye tekhnologii [New Technology], 2009, No. 4 (26), pp. 101-106.
18. Karpenko A.N. Otsenka relevantnosti dokumentov ontologicheskoy bazy znaniy [Assessing document relevance in ontology knowledge base], Nauka i obrazovanie [Science and Educa-tion], 2010, No. 9, pp. 1-26.
19. Kureychik V.M., Kalanchuk S.A. Obzor i sostoyanie problemy roevykh metodov optimizatsii [Overview and status of the problem of swarm optimization methods], Informatika, vychislitel'naya tekhnika i inzhenernoe obrazovanie [Computer science, computer engineering and engineering educatio], 2016, No. 1 (25), pp. 1-13.
20. Kureychik V.M., Kazharov A.A. Ispol'zovanie roevogo intellekta v reshenii NP-trudnykh zadach [Swarm intelligence using for NP-tasks solving], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 7 (120), pp. 30-36.
21. Lebedev B.K., Lebedev O.B., Lebedeva E.M. Razbienie na klassy metodom al'ternativnoy kollektivnoy adaptatsii [Partition a class method alternative collective adaptation], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 7 (180),
pp. 89-101.
22. Karpenko A.P. Populyatsionnye algoritmy global'noy poiskovoy optimizatsii. Obzor novykh i maloizvestnykh algoritmov [Population algorithms of global search engine optimization. Overview of new and little-known algorithms], Informatsionnye tekhnologii [Information Technology], 2012, No. 7, pp. 1-32.
23. Rodzin S., Rodzina L. Theory of bioinspired search for optimal solutions and its application for the processing of problem-oriented knowledge, Proceeding of the 8th IEEE International Con-ference «Application of Information and Communication Technologies», 2014, pp. 142-147.
24. Kureychik V.V., Polupanova E.E. Evolyutsionnaya optimizatsiya na osnove algoritma kolonii pchel [Artificial bee colony algorithm of evolutionary optimization], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2009, No. 12 (101), pp. 41-46.
25. Kuliev E.V., Lezhebokov A.A., Dukkardt A.N. Podkhod k issledovaniyu okrestnostey v roevykh algoritmakh dlya resheniya optimizatsionnykh zadach [Approach to research environs in swarms algorithm for solution of optimizing problems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 7 (156), pp. 15-25.
26. Semenova A.V., Kureychik V.M. Multi-objective particle swarm optimization for ontology alignment, Proceeding of the 10th International Conference on «Application of Information and Communication Technologies», 2016, pp. 141-148.
27. Bova V.V., Kureichik V.V., Zaruba D.V. Data and knowledge classification in intelligence informational systems by the evolutionary method, Proceeding of the 6th International Confer-ence «Cloud System and Big Data Engineering (Confluence)», 2016, pp. 6-11.
28. Mizzaro S., Robertson S. HITS hits TREC - exploring IR evaluation results with network anal-ysis, SIGIR 2007. ACM, 2007, pp. 479-486.

Comments are closed.