Article

Article title STUDY ON OPTIONS FOR ADAPTIVE ANALYSIS OF THE SOLUTIONS OF OPTIMIZATION PROBLEMS
Authors Yu.O. Chernyshev, N.N. Ventsov, P.A. Panasenko
Section SECTION III. MODELING AND DESIGN
Month, Year 02, 2015 @en
Index UDC 681.3
DOI
Abstract Analyzed options for the development of the generalized membership function fuzzy estimates of solutions to optimization problems. The problem lies in allotment the adaptive properties of the formation process of membership function, combining (generalizing) requirements experts, formulated in permitting and prohibiting the form. Under the adaptability refers to the change in the area of feasible solutions is described by a generalized membership function, depending on the stiffness of the requirements for the projected izdeliya. Adaptation is achieved through the use of different variants of calculation operations implications in accordance with ones of Reichenbach, Racer-Gaines and Lukasiewicz. It is shown that for a clear distinction between the permissible and prohibited the solutions you need to use logic Racer-Gaines, and vague - Reichenbach, and Lukasiewicz. Adapting to the impacts that changes the Smoking area/valid solutions can be set using the operator CON. Estimates of the fuzzy sets of level 1 to 0.85, 0.5, and educated by computing implications based on the logics of Reichenbach, Racer-Gaines and Lukasiewicz.

Download PDF

Keywords Adaptation of fuzzy system; many levels; implication; intellectual methods
References 1. Litvinenko V.A. Adaptivnye algoritmy proektnykh operatsiy SAPR EVA [Adaptive algorithms project operation AVA CAD], IS-IT`14: Tr. Mezhdunar. kongr. po intellekt. sistemam i inform. tekhnologiyam, p. Divnomorskoe, 2-9 sent. [IS-IT`14: proceedings of the International Congress on intelligent systems and informarmation technology, p. Divnomorskoe, 2-9 Sept.].
Moscow: Fizmatlit, 2014, Vol. 1, pp. 113-119.
2. Lebedev B.K. Intellektual'nye protsedury sinteza topologii SBIS [Intellectual procedure of synthesis of VLSI topology]. Taganrog: Izd-vo TRTU, 2003, 108 p.
3. Charles J. Alpert, Dinesh P. Mehta, Sachin S. Sapatnekar. Handbook of algorithms for physical design automation. CRC Press, New York, USA, 2009.
4. Malyshev N.G., Bershteyn L.S., Bozhenyuk A.V. Nechetkie modeli dlya ekspertnykh sistem v SAPR [A fuzzy model for expert systems in CAD]. Moscow: Energoatomizdat, 1991, 136 p.
5. Dasgupta D., Forrest S. Novelty Detection in Time Series Data using Ideas from Immunology. Fifth International Conference on Intelligent Systems. Reno, Nevada: June, 1996.
6. Calenbuhr V., Bersini Я., Varela F.J., Stewart J. The impact of the structure of the connectivity matrix on the dynamics of a simple model for the immune network, Proc. 1st Copenhagen Symp. on Computer Simulation in Biology, Ecology and Medicine (Ed.E. Mosekilde), 1993. pp. 41-45.
7. Ostroukh E.N., Zolotareva L.I., Bychkov A.A., Dolgov V.V. Vektornaya optimizatsiya pererabatyvayushchikh protsessov s uchetom syr'evogo defitsita [Vector optimization of refining processes subject to commodity shortages], Fundamental'nye issledovaniya [Fundamental research], 2011, No. 12-1, pp. 224-227.
8. Chernyshev Yu.O., Ventsov N.N., Mukhtarov S.A. Primenenie logik Lukasevicha i Zade pri realizatsii metoda otritsatel'nogo otbora [Application logics lukasiewicz and Zadeh in the method of adverse selection], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 7 (144), pp. 91-77.
9. Ventsov N.N. Evolyutsionnyy podkhod k modelirovaniyu raspredelitel'nykh pro-tsessov [An evolutionary approach to modeling the distribution processes], Inzhenernyy vestnik Dona [Engineering journal of Don], 2013, No. 4. Available at: ivdon.ru/magazine/archive/n4y2013/1886.
10. Ventsov N.N. Razrabotka algoritma upravleniya protsessom adaptatsii nechetkikh proektnykh metadannykh [Development of an algorithm for management of process of adaptation of fuzzy project metadata], Inzhenernyy vestnik Dona [Engineering journal of Don], 2012, No. 1.
Available at: ivdon.ru/ru/magazine/archive/n1y2012/630.
11. Chernyshev Yu.O., Ventsov N.N., Mukhtarov S.A. K voprosu ob intellektual'noy podderzhke protsessa dovodki SBIS [To the question of intellectual support of process of finishing VLSI], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 7 (132), pp. 63-69.
12. Chernyshev Yu.O., Ventsov N.N., Mukhtarov S.A. Razrabotka algoritma intellek-tual'noy podderzhki uluchsheniya promezhutochnykh resheniy optimizatsionnykh zadach [Algorithm development intellectual support improvement of intermediate solutions of optimization problems], Vestnik DGTU [Vestnik DSTU], 2012, No. 5 (56), pp. 68-76, pp. 63-69.
13. Bershteyn L.S., Bozhenyuk A.V. Analiz ispol'zovaniya operatora implikatsii v nechetkom pravile vyvoda po analogii [An analysis of the use of the implication operator in fuzzy rule inference by analogy], Izvestiya TRTU [Izvestiya TSURe], 2004, No. 3 (38), pp. 5-10.
14. Nechetkie mnozhestva v modelyakh upravleniya i iskusstvennogo intellekta [Fuzzy sets in models of control and artificial intelligence], Under ed. D.A. Pospelova. Moscow: Nauka. Gl. red. Fiz.-mat. lit., 1986, 321 p.
15. Borisov A.N., Alekseev A.V., Krumberg O.A. i dr. Modeli prinyatiya resheniy na osnove lingvisticheskoy peremennoy [Models of decision making based on linguistic variable]. Riga: Zinatne, 1982, 256 p.
16. Zade L.A. Ponyatie lingvisticheskoy peremennoy i ego primenenie k prinyatiyu priblizhennykh resheniy [The concept of a linguistic variable and its application to approximate reasoning]. Moscow: Mir, 1976, 165 p.
17. Prikladnye nechetkie sistemy [Applied fuzzy systems]: Translation from Japanese K. Asai, D. Vatada, S. Ivai i dr., Under ed. T. Terano, K. Asai, M. Sugeno. Moscow: Mir, 1993, 386 p.
18. Kureychik V.M. Osobennosti postroeniya sistem podderzhki prinyatiya resheniy [Features of decision making support system design], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 7 (132), pp. 92-98.
19. Iskusstvennye immunnye sistemy i ikh primenenie [Artificial immune systems and their applications], Under ed. Dasgupty D., Translation from English, Under ed. Romanyukhi A.A. Moscow: Fizmatlit, 2006, 344 p.
20. Kofman A. Vvedenie v teoriyu nechetkikh mnozhestv [Introduction to the theory of fuzzy sets], Translation from English. Moscow: Radio i svyaz', 1982, 432 p.
21. Zade L.A. Fuzzy sets, Information and Control, 1965, Vol. 8, pp. 338.
22. Kureychik V.M., Lebedev B.K., Lebedev O.B. Poiskovaya adaptatsiya: teoriya i praktika [Search adaptation: theory and practice]. Moscow: Fizmatlit, 2006, 272 p.

Comments are closed.