Статья

Название статьи МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЗАДАЧ ГЕОФИЛЬТРАЦИИ В ПОЧВОГРУНТАХ С ФРАКТАЛЬНОЙ СТРУКТУРОЙ НА МНОГОПРОЦЕССОРНЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМАХ
Автор М.Д. Чекина
Рубрика РАЗДЕЛ III. ПРИМЕНЕНИЕ СУПЕРКОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ
Месяц, год 12, 2014
Индекс УДК 519.684.6
DOI
Аннотация При моделировании геофильтрации в почвогрунтах необходимо учитывать фрактальную структуру почвы, которая обеспечивается сложной геометрией капилляров и пор, так как данная структура приводит к фрактализации процесса растекания жидкости, поэтому возникает необходимость учета фрактальной структуры среды при математическом моделировании, что осуществимо посредством аномальной диффузии, которая описывается уравнениями в частных дробных производных. Описывается построение математической модели на основе уравнения Букингема-Ричардса, в котором оператор дифференцирования по времени был заменен частной дробной производной Римана-Луивилля. Также для непрерывной модели получен дискретный аналог с помощью интегроинтерполяционного метода. При численном решении задач такого типа происходит обработка больших объемов данных, отсюда возникает необходимость использования при расчетах высокопроизводительные вычислительные системы. Для решения данной задачи разработана параллельная реализация модифицированного попеременно-треугольного метода, которая позволила в несколько раз увеличить скорость работы программного комплекса (ПК). Высокая производительность ПК необходима для оперативного получения результатов моделирования, что позволит осуществлять, например, подъем грунтовых вод в режиме реального времени, и таким образом свести к минимуму ущерб от затопления.

Скачать в PDF

Ключевые слова Геофильтрация; аномальная диффузия; суперЭВМ; численный метод; МПТМ; дробные производные; фрактальные структуры.
Библиографический список 1. Кащенко Н.М., Никитин М.А. Моделирование эффектов аномальной диффузии для дренажных схем // Вестник Балтийского федерального университета им. И. Канта. – 2010. – № 4.
2. Шхануков-Лафишев М.Х., Такенова Ф.И. Разностные методы решения краевых задач для дифференциальных уравнений дробного порядка // Журнал вычислительной математики и математической физики. – 2006. – Т. 46, № 10. – С. 1871-1881.
3. Самарский А.А. Теория разностных схем. – М.: Наука, 1977. – 656 c.
4. Сухинов А.И., Чекина М.Д. Математическая модель и численный метод для задачи динамики выпадения осадков и затопления // Известия ЮФУ. Технические науки. – 2009. – № 8 (97). – С. 42-52.
5. Сухинов А.И., Чекина М.Д. Математическое моделирование процессов накопления и фильтрации осадков с помощью супервычислительных систем // Известия ЮФУ. Технические науки. – 2010. – № 6 (107). – С. 103-113.
6. Сухинов А.И., Чистяков А.Е. Адаптивный модифицированный попеременно-треугольный итерационный метод для решения сеточных уравнений с несамосопряженным оператором // Математическое моделирование. – 2012. – Т. 24, № 1. – С. 3-20.
7. Коновалов А.Н. К теории попеременно-треугольного итерационного метода // Сибирский математический журнал. – 2002. – Т. 43, № 3. – С. 552.
8. Сухинов А.И., Чистяков А.Е., Тимофеева Е.Ф., Шишеня А.В. Математическая модель расчета прибрежных волновых процессов // Математическое моделирование. – 2012. – Т. 24, № 8. – С. 32-44.
9. Сухинов А.И., Чистяков А.Е., Шишеня А.В. Оценка погрешности решения уравнения диффузии на основе схем с весами // Математическое моделирование. – 2013. – Т. 25, № 11. – С. 53-64.

Comments are closed.