DESIGN OF HYBRID CONTROL SYSTEM FOR NONAFFINE OBJECTS

  • А.R. Gaiduk Southern Federal University
  • Ali El A. Kabalan Southern Federal University
  • V.K. Pshikhopov Southern Federal University
  • М. Y. Medvedev Southern Federal University
  • V.G. Gistsov Southern Federal University
Keywords: Nonlinear system, nonaffine control plant, quasilinear model, polynomial matrix method, controllability condition, static error

Abstract

In the theory of automatic control, an urgent problem is the development of design methods by
nonaffine control systems. In such systems, the control affects the input of the plant nonlinearly, so it
affects the state variables non-additively. The purpose of this article is to develop a design method that
ensures the stability of the zero equilibrium position of a closed control system in a certain area.
The object described by a nonlinear system of differential equations with one control is considered.
A restriction is introduced, consisting in the differentiability of the right part of the differential equations
for all state variables. The task of designing control in the form of a function of the reference signal, a
vector of state variables and control values at previous points in time is set. This problem is solved using
a quasilinear model of the control plant. This model of description allows you to preserve all the features
of a nonlinear plant without simplifying them. In the quasilinear model, matrices and vectors are
functions of the variables of the state of the control plant. The control is performed using an algebraic
polynomial matrix method. This method allows you to find control when the control condition of the
plant are met in the form of inequalities. This article presents the expressions for calculating the control
according to the polynomial matrix method. Based on the given coefficients of the desired polynomial,
as a result of solving an algebraic system of equations, coefficients are found that are a function of control
and state variables. At the same time, the fulfillment of the controllability condition guarantees the
existence of a solution of the specified algebraic system. An expression has been found that allows calculating
the control by the coefficients found. The article also finds a condition for the possibility of
providing a non-zero value of the output controlled quantity of a nonlinear Hurwitz system in a steadystate
mode. Under this condition, a zero value of the static error for the setting effect can also be provided.
Further, the transformation of the obtained continuous control into a discrete one is proposed, which
is implemented in a digital computer. The article also provides a numerical example of the control design
of a second-order nonlinear control and the results of modeling a closed nonaffine system.
The given example confirms the theoretical results obtained. Thus, the proposed approach makes it possible
to design stable Hurwitz control systems for nonaffine objects using the algebraic polynomial matrix
method with sufficiently small sampling periods of variables of the control object and small modules of the
roots of the characteristic polynomial of the matrix of a closed system in its quasilinear model.

References

1. Zhang J., Zhu Q., Wu X., Li Y. A generalized indirect adaptive neural networks backstepping
control procedure for a class of non-affine nonlinear systems with pure-feedback prototype,
Neurocomputing, 2013, Vol. 121, No. 9, pp. 131-139.
2. Pshikhopov V.Kh., Medvedev M.Yu. Sintez sistem upravleniya podvodnymi apparatami s
nelineynymi kharakteristikami ispolnitel'nykh organov [Synthesis of control systems for underwater
vehicles with nonlinear characteristics of actuators], Izvestiya YuFU. Tekhnicheskie
nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 3, pp 147-154.
3. Zhou J., Li X. Finite-Time Mode Control Design for Unknown Nonaffine Pure-Feedback Systems,
Mathematical Problems in Engineering, 2015, Vol. 2015, Article ID 653739, 9 p. Available
at: http://dx.doi.org/10.1155/2015/653739.
4. Liu Y.-J., Wang W. Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems,
Information Sciences, 2007, Vol. 177, No. 18, pp. 3901-3917.
5. Pshikhopov V., Krukhmalev V., Medvedev M., and Neydorf R. Estimation of Energy Potential
for Control of Feeder of Novel Cruiser/Feeder MAAT System, SAE Technical Paper, 2012.
DOI: 10.4271/2012-01-2099.
6. Pshikhopov V.Kh., Medvedev M.Yu. Sintez adaptivnykh sistem upravleniya letatel'nymi
apparatami [Synthesis of adaptive aircraft control systems], Izvestiya YuFU. Tekhnicheskie
nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 3 (104), pp. 187-196.
7. Medvedev M.Yu. Sintez suboptimal'nykh upravleniy nelineynymi mnogosvyaznymi
dinamicheskimi sistemami [Synthesis of suboptimal controls by nonlinear multiconnected dynamic
systems], Mekhatronika, avtomatizatsiya i upravlenie [Mechatronics, Automation, Control],
2009, No. 12, pp. 2-8.
8. Boychuk L.M. Metod strukturnogo sinteza nelineynykh sistem avtomaticheskogo upravleniya
[Method of structural synthesis of nonlinear automatic control systems]. Moscow: Energiya, 1971.
9. Kristic M., Kanellakopoulos, and Kokoyovic P.V. Nonlinear and Adaptive Control Design.
Wiley, New York, NY, USA I., 1995.
10. Petrov B.N., Emel'yanov SV., Utkin V.I. Printsip postroeniya invariantnykh sistem
avtomaticheskogo regulirovaniya s peremennoy strukturoy [The principle of construction of
invariant automatic control systems with variable structure], DAN SSSR [Reports of the Academy
of Sciences of USSR], 1964, Issue 154, No. 6.
11. Krasnova S.A., Utkin V.A., Utkin A.V. Blochnyy sintez upravleniya mekhanicheskimi
sistemami v usloviyakh neopredelennosti [Block synthesis of control of mechanical systems
under conditions of uncertainty], Mekhatronika, avtomatizatsiya i upravlenie [Mechatronics,
Automation, Control], 2009, No. 6, pp. 41-54.
12. Druzhinina M.V., Nikiforov V.O., Fradkov A.L. Metody adaptivnogo upravleniya nelineynymi
ob"ektami po vykhodu [Methods of adaptive control of nonlinear objects by output],
Avtomatika i telemekhanika [Automation and Telemechanics], 1996, No. 1, pp. 3-33.
13. Pontryagin L.S., Boltyanskiy V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya
teoriya optimal'nykh protsessov [Mathematical theory of the optimal processes]. Moscow:
Fizmatgiz, 1961.
14. Boltyanskiy V.G. Matematicheskie metody optimal'nogo upravleniya [Mathematical methods
of optimal control]. Moscow: Nauka. 1969.
15. Pyatnitskiy S.I. Upravlyaemost' klassov lagranzhevykh sistem s ogranichennymi
upravleniyami [Controllability of Lagrange systems with limited controls], Avtomatika i
telemekhanika [Automation and Telemechanics], 1996, No. 12, pp. 29-37.
16. Gayduk A.R., Plaksienko V.S., Kabalan A.E.A. Algebraicheskiy polinomial'no-matrichnyy
metod sinteza nelineynykh astaticheskikh sistem [Algebraic polynomial matrix method for design
of nonlinear astatic systems], Matematicheskie metody v tekhnologiyakh i tekhnike [Mathematical
methods in technology and engineering], 2022, No. 1, pp. 41-45. DOI:
10.52348/2712-8873_MMTT_2022_1_41.
17. Gayduk A.R. Chislennyy metod sinteza kvazilineynykh modeley nelineynykh ob"ektov [Numerical
design method of quasilinear models of nonlinear objects], Mekhatronika, avtomatizatsiya,
upravlenie [Mechatronics, Automation, Control], 2021, Vol. 22, No. 6, pp. 283-290.
18. Gayduk A.R. Algebraicheskiy sintez nelineynykh stabiliziruyushchikh upravleniy [Algebraic
synthesis of nonlinear stabilizing controls], Sintez algoritmov slozhnykh system [Algorithms
design of complex systems]. Issue 7. Taganrog: TRTI, 1989, pp. 15-19.
19. Babakov N.A., Voronov A.A., Voronova A.A. i dr. Teoriya avtomaticheskogo upravleniya: uch.
dlya vuzov. Ch. I. Teoriya lineynykh sistem avtomaticheskogo upravleniya [Theory of automatic
control: uch. for universities. Part I. Theory of linear automatic control systems], ed. by
A.A. Voronova. 2nd ed. Moscow: Vysshaya shkola, 1986, 367 p.
20. Gayduk A.R. Polinomial'nyy sintez nelineynykh sistem upravleniya [Polynomial design of
nonlinear control systems], Avtomatika i telemekhanika [Automation and Telemechanics],
2003, No. 10, pp. 144-148.
21. Gayduk A.R. Analiticheskiy sintez upravleniya nelineynymi ob"ektami odnogo klassa [Analytical
synthesis of control for nonlinear objects in one class], Avtomatika i telemekhanika [Automation
and Telemechanics], 1993, No. 2, pp. 64-76.
22. Çimen T. State-Dependent Riccati Equation (SDRE) Control: A Survey, In Proceedings of the 17th
World Congress of the International Federation of Automatic Control, July 2008, pp. 3761-3775.
23. Li-Gang Lin, J. Vandewalle, Yew-Wen Liang. Analytical representation of the state-dependent
coefficients in the SDRE/SDDRE scheme for multivariable systems, Automatica, 2015,
Vol. 59, pp. 106-111. Available at: https://doi.org/10.1016/j.automatica.2015.06.015.
24. Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya [Theory of
automatic control systems]. Moscow: Nauka, Glavnaya redaktsiya fiziko-matematicheskoy
literatury, 1972, 768 p.
25. Gayduk A.R. Nepreryvnye i diskretnye dinamicheskie sistemy [Nepreryvnye i diskretnye
dinamicheskie sistemy]. Moscow: UM i ITS «Uchebnaya literatura», 2004, 252 p.
26. Gantmakher F.R. Teoriya matrits [Matrix theory]. 5th ed. Moscow: Fizmatlit, 2004, 560 p.
Published
2023-04-10
Section
SECTION II. CONTROL AND SIMULATION SYSTEMS