MICROWAVE CIRCUIT ANALYZERS ON A MULTI-PROBE MEASURING LINE. REVIEW OF SIGNAL PROCESSING METHODS, PROBLEMS AND PROSPECTS (REVIEW)
Cite as: A.A. L’vov, B.M. Kats, P.A. L’vov, V.P. Meschanov, K.A. Sayapin. Microwave circuit analyzers on a multi-probe measuring line. Review of signal processing methods, problems and prospects (review) // Izvestiya SFedU. Engineering Sciences – 2024. – N. 6. - P. 230-247. doi: 10.18522/2311-3103-2024-6-230-247
Abstract
Further progress in microwave technology is inextricably linked with the creation of new precision
automatic measuring systems. In our country, microwave circuit vector analyzers that can measure the
amplitude and phase relationships of the S-parameters of the microwave networks under test are not
mass-produced. The use of multi-port reflectometers (MPR) as measuring devices in automatic microwave
circuit analyzers allows creating relatively cheap and high-precision devices for studying load parameters.
The paper provides an overview of the works in which the MPR method is developed, when the latter
can be represented by a multi-probe transmission line reflectometer (MTLR). The history of the development
of measurement methods using traditional MPR is briefly described and it is shown that the main
problem of their use is reflectometer calibration, which can be carried out accurately only using a set of
precision calibration standards. MTLR, which is a special case of MPR, is studied in detail. It is shown
that random measurement errors by the MTLR method are higher than those of a precisely calibrated MR.
However, the MTLR has important advantages that are discussed in the paper. A strategy for increasing
the measurement accuracy using the MTLR is described: 1) optimal methods for processing output signals
from the MTLR probes using the maximum likelihood method are proposed; 2) methods for calibrating the MTLR sensors are studied in detail and it is shown that it can be calibrated using a set of inaccurately known
loads with their parallel certification, therefore, systematic calibration errors are significantly reduced;
3) methods for optimizing the MTLR design by arranging the probes inside the microwave path for measuring
with maximum accuracy in narrow and wide frequency ranges are studied, and it is also shown how it is
possible to measure with potentially achievable accuracy due to the proper choice of weighting coefficients in
the MTLR probes. Random and systematic errors in measuring the complex reflection index of microwave
loads, as well as uncertainties in measuring types A and B by the MTLR method are investigated, and references
to relevant works are given. In conclusion, the possibilities of joint use of the MTLR and MPR methods
are considered, a combined MPR is briefly described, which measures with an accuracy characteristic of a
traditional MPR, but can be calibrated using a set of unknown loads, which is inherent in the MTLR method.
Automatic network analyzer, multi-pole reflectometer, multi-probe measuring line, maximum likelihood
method, error dispersion matrix, meter calibration.
References
for Automatic Measurements in Microwaves, Proc. of the 2017 IEEE Russia Section Young
Researchers in Electrical and Electronic Engineering Conf. St. Petersburg, Russia: IEEE, 2016,
pp. 960-964.
2. Gupta K., Gardzh R., Chadkha R. Mashinnoe proektirovanie SVCh ustroystv [Machine design of microwave
devices]. M.: Radio i svyaz', 1987, 432 p.
3. Anufriev A. Tekhnologii kompanii Keysight Technologies na rossiyskom predpriyatii – pervyy opyt
[Keysight Technologies at Russian enterprise – first experience], Elektronika. Nauka. Tekhnologiya.
Biznes [Electronics. Science. Technologies. Business], 2016, Issue 2, pp. 86-87.
4. Engen G.F., Hoer C.A. Application of an Arbitrary Six-Port Junction to Power Measurement Problems,
IEEE Trans. on Instrum. and Meas., 1972, Vol. 21, No. 5, pp. 470-474.
5. Hoer C.A. The Six-Port Coupler: A New Approach to Measuring Voltage, Current, Power, Impedance,
and Phase, IEEE Trans. on Instrum. and Meas., 1972, Vol. IM-21, No. 11, pp. 466-470.
6. Hanson E.R.B., Riblet G.P. An Ideal Six-Port Network Consisting of a Matched Reciprocal Lossless
Five-Port and a Perfect Directional Coupler, IEEE Trans. of Microwave Theory and Tech., 1983,
Vol. MTT-31, No. 3, pp. 284-288.
7. Hunter J.D., Somlo P.I. Simple Derivation of Six-Port Reflectometer Equations, Electronic Letters,
1985, Vol. 21, No. 4, pp. 370-371.
8. Petrov V.P., Ryasnyy Yu.V., Zhuravleva O.B. Mnogopolyusnye izmeritel'nye preobrazovateli
analizatorov tsepey na SVCh [Multi-pole measuring converters of microwave network analyzers],
Izmeritel'naya tekhnika [Measuring equipment], 1987, No. 3, pp. 41-43.
9. Nikulin S.M., Salov A.N. Primenenie dvenadtsatipolyusnykh reflektometrov v tekhnike SVChizmereniy
[Application of twelve-pole reflectometers in microwave measurement technology],
Radiotekhnika [Radio engineering], 1987, No. 7, pp. 70-72.
10. Somlo P.I. The Case for Using a Matched Load Standard for Six-Port Calibration, Electronic Letters,
1983, Vol. 19, No. 11, pp. 979-980.
11. Li S., Воsisiо R.G. Calibration of Multiport Reflectometers by Means of Four Open Short Circuits,
IEEE Trans. on Microwave Theory and Tech., 1982, Vol. MTT-30, No. 7, pp. 1085-1090.
12. Nikulin S.M., Salov A.N. Metod kalibrovki avtomaticheskikh analizatorov SVCh tsepey s
dvenadtsatipolyusnymi reflektometrami [Method of calibration of automatic analyzers of microwave
circuits with twelve-pole reflectometers], Izmeritel'naya tekhnika [Measuring equipment], 1988, No. 8,
pp. 43-45.
13. Xiao F., Ghannouchi F.M., Yakabe T. Application of a Six-Port Wave-Correlator for a Very Low Velocity
Measurement Using the Doppler Effect, IEEE Trans. on Instrum. and Meas., 2003, Vol. 52,
No. 2, pp. 546-554.
14. Ghannouchi F.M., Mohammadi A. The six-port technique with microwave and wireless applications.
Boston, London: Artech House, 2009.
15. Hasan A., Helaoui M. Novel Modeling and Calibration Approach for Multi-Port Receivers Mitigating
System Imperfections and Hardware Impairments, IEEE Trans. on Microwave Theory Tech., 2012,
Vol. 60, No. 8, pp. 2644-2653.
16. L'vov P.A. Primenenie mnogopolyusnykh reflektometrov spetsial'nogo vida dlya resheniya ryada
prikladnykh zadach [Application of multi-pole reflectometers of a special type for solving a number of
applied problems], Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of
the Saratov State Technical University], 2010, No. 2 (45), pp. 181-193.
17. Caldecott R. The Generalized Multiprobe Reflectometer and Its Application to Automated Transmission
Line Measurements, IEEE Trans. on Antennas and Propagation, 1973, Vol. AP-21, No. 4,
pp. 550-554.
18. Rumyantsev Yu.B., Gaydarov A.S. A.s. № 1133564 Kl. G01R 27/06. Ustroystvo dlya izmereniya
modulya i fazy koeffitsienta otrazheniya v SVCh traktakh [Author's certificate No. 1133564, Class
G01R 27/06. Device for measuring the modulus and phase of the reflection coefficient in microwave
paths]. Published in the Bulletin of inventions, 1985, No. 1.
19. Bondarenko I.K., Gimpilevich Yu.B., TSarik Yu.I. Avtomaticheskiy analizator tsepey
mnogoelementnogo tipa i metody ego kalibrovki [Automatic analyzer of multi-element circuits and
methods of its calibration], Izmeritel'naya tekhnika [Measuring equipment], 1985, No. 10, pp. 33-34.
20. Zebek S.E., Gimpilevich Yu.B. Avtomaticheskiy izmeritel' kompleksnogo koeffitsienta otrazheniya na
osnove kvadraturnogo metoda [Automatic meter of complex reflection coefficient based on the quadrature
method], Sovremennye problemy radioelektroniki i telekommunikatsiy [Modern problems of radio
electronics and telecommunications], 2018, No. 1, pp. 128.
21. Kolotygin S.A., Manevich V.Z. Pogreshnost' izmereniy na SVCH mnogozondovym preobrazovatelem
prokhodnogo tipa [Error of measurements at microwave frequencies by a multi-probe feed-through
converter], Issledovaniya v oblasti pretsizionnykh radiotekhnicheskikh izmereniy: Sb. nauchnykh
trudov [Research in the field of precision radio engineering measurements: Collection of scientific papers].
Moscow: VNIIFTRI, 1987, pp. 10-19.
22. L'vov A.A. Metodologiya povysheniya tochnosti avtomaticheskikh SVCh-izmeriteley na osnove
statisticheskogo analiza nelineynykh modeley: disc. … dokt. tekhn. nauk [Methodology for improving
the accuracy of automatic microwave meters based on statistical analysis of nonlinear models: dr. of
eng. sc. diss.]. Saratov, 2002, 370 p.
23. L'vov A.A., Meshchanov V.P., Svetlov M.S. Optimal'noe otsenivanie parametrov SVCh-tsepey s
pomoshch'yu avtomaticheskikh analizatorov tsepey. Obshchaya postanovka zadachi [Optimal estimation
of microwave circuit parameters using automatic circuit analyzers. General statement of the problem],
Radiotekhnika [Radio Engineering], 2016, No. 10, pp. 240-244.
24. Linnik Yu.V. Metod naimen'shikh kvadratov i osnovy teorii obrabotki nablyudeniy [Least squares
method and fundamentals of the theory of observation processing]. Moscow: GIFML, 1958, 334 p.
25. L'vov A.A., Morzhakov A.A., Shirshin S.I., Zhukov A.V., Kudryashov Yu.Yu. Izmerenie parametrov
SVCH-dvukhpolyusnikov putem mnogozondovoy izmeritel'noy linii [Measuring parameters of microwave
two-terminal networks by means of a multi-probe measuring line], Elektronnaya tekhnika.
Ser. 1: Elektronika SVCh [Electronic engineering. Ser. 1: Microwave electronics], 1987, Issue 7 (401),
pp. 48-51.
26. L'vov A.A., Meshchanov V.P., Svetlov M.S., Nikolaenko A.Yu. Optimal'noe otsenivanie parametrov
SVCh-tsepey s pomoshch'yu avtomaticheskikh analizatorov tsepey. Algoritmy obrabotki
nablyudaemykh dannykh [Optimal estimation of microwave circuit parameters using automatic network
analyzers. Algorithms for processing observed data], Radiotekhnika [Radio Engineering], 2018,
No. 8, pp. 147-154.
27. L'vov A.A., Meshchanov V.P., Svetlov M.S., Semezhev N. Optimal'noe otsenivanie parametrov SVChtsepey
s pomoshch'yu avtomaticheskikh mnogopolyusnykh analizatorov. Vybor optimal'nogo sostava
izmereniy [Optimal estimation of microwave circuit parameters using automatic multi-pole analyzers.
Selection of the optimal composition of measurements], Radiotekhnika [Radio Engineering], 2019,
No. 7 (10), pp. 101-111.
28. Andriyanov V.A., Kudryashov Yu.Yu., L'vov A.A., Morzhakov A.A. Patent RF № 1555682 kl. G01R
27/06. Sposob kalibrovki koeffitsientov peredachi mnogozondovoy izmeritel'noy linii [Patent of the
Russian Federation No. 1555682 class G01R 27/06. Method for calibrating the transmission coefficients
of a multi-probe measuring line]. Published in the Bulletin of inventions, 1990, No. 17..
29. L'vov A.A., Morzhakov A.A., Kudryashov Yu.Yu., Likhomanov A.Yu. A.s. № 1700504 kl. G01R 35/00.
Sposob kalibrovki koeffitsientov peredachi datchikov mnogozondovoy izmeritel'noy linii [Author's
certificate No. 1700504, Class G01R 35/00. Method for calibrating the transmission coefficients of a
multi-probe measuring line]. Opubl. v B.I. № 48, 23.12.91. Published in the Bulletin of inventions,
1991, No. 48.
30. L'vov A.A., Morzhakov A.A., Shirshin S.I., Zhukov A.V., Kudryashov Yu.Yu. Avtomatizirovannaya
sistema izmereniya SVCh-parametrov generatorov dlya bytovykh mikrovolnovykh pechey [Automated
system for measuring microwave parameters of generators for household microwave ovens],
Elektronnaya tekhnika. Ser. 8: Upravlenie kachestvom, standartizatsiya, metrologiya, ispytaniya
[Electronic engineering. Series 8: Quality management, standardization, metrology, testing], 1989,
Issue 5 (137), pp. 50-53.
31. L'vov A.A., Semenov K.V. Metod kalibrovki avtomaticheskoy mnogozondovoy izmeritel'noy linii [Calibration
method of automatic multi-probe measuring line], Izmeritel'naya tekhnika [Measuring engineering],
1999, No. 4, pp. 34-39.
32. Kudryashov Yu.Yu., L'vov A.A., Morzhakov A.A., Shirshin S.I. Optimizatsiya parametrov
mnogozondovoy izmeritel'noy linii [Optimization of parameters of a multi-probe measuring line],
Elektronnaya tekhnika, Ser. 1. Elektronika SVCh [Electronic Engineering. Series 1. Microwave
Electronics], 1988, Issue 14 (414), pp. 30-34.
33. L’vov A.A., Geranin R.V., Semezhev N., L’vov P.A. Statistical Approach to Measurements with Microwave
Multi-Port Reflectometer and Optimization of Its Construction, Proc. of Microwave and Radio
Electronics Week, 14th Conf. on Microwave Techniques. Pardubice, Czech Republic: IEEE, 2015,
pp. 179-183. DOI: 10.1109/COMITE.2015.7120229.
34. L'vov A.A., Galkina S.A., Anufriev A.N. Design of wideband automatic network analyzers based on the
multi-port reflectometer, Proc. of the 2016 Int. Conf. on Actual Problems of Electron Devices Engineering.
Saratov, Russia: IEEE, 2016, P. 416-423. DOI: 10.1109/APEDE.2016.7879038.
35. Katz B.M., L’vov A.A., Meschanov V.P., Shatalov E.M., Shilova L.V. Synthesis of a Wideband
Multiprobe Reflectometer, IEEE Transactions on Microwave Theory and Techniques, 2008, Vol. 56,
No. 2, pp. 507-514.
36. L'vov A.A., Morzhakov A.A., Zhukov A.V. Statisticheskiy analiz tochnostnykh kharakteristik metoda
mnogozondovoy izmeritel'noy linii [Statistical analysis of accuracy characteristics of the multi-probe
measuring line method], Elektronnaya tekhnika. Ser. 1. Elektronika SVCh [Electronic engineering.
Ser. 1. Microwave electronics], 1990, Issue 1 (425), pp. 50-57.
37. L'vov A.A., Morzhakov A.A. Statistical Estimation of the Complex Reflection Coefficient of Microwave
Loads Using a Multi-Port Reflectometer, Proc. of 1995 SBMO/IEEE MTT-S Int. Microwave and
Optoelectronics Conf. Rio-de-Janeiro, Brazil: IEEE, 1995, pp. 235-239.
38. GOST R 54500.1—2011/Rukovodstvo ISO/MEK 98-1:2009. Neopredelennost' izmereniya. Chast' 1.
Vvedenie v rukovodstva po neopredelennosti izmereniya [GOST R 54500.1—2011/ISO/IEC Guide
98-1:2009. Uncertainty of measurement. Part 1. Introduction to guides on uncertainty of measurement].
Moscow: Standartinform, 2012, 24 p.
39. Solopekina A.A., L'vov A.A., Semezhev N. Calculation of measurement uncertainties of multi-port
transmission line reflectometer, Proc. of 2014 Int. Conf. on Actual Problems of Electron Devices Engineering.
Saratov, Russia: IEEE, 2014, pp. 356-362. DOI: 10.1109/APEDE.2014.6958776.
40. Solopekina A.A., L'vov A.A., Semezhev N. Raschet neopredelennostey izmereniya kharakteristik
mnogozondovoy izmeritel'noy linii [Calculation of uncertainties in measuring the characteristics of a
multi-probe measuring line], Komp'yuternye nauki i informatsionnye tekhnologii: Mater. Mezhdunar.
nauch. konf. [Computer science and information technology: Proceedings of the International scientific
conference]. Saratov: Izdat. tsentr «Nauka», 2016, pp. 396-400.
41. Solopekina A.A., Semezhev N., L’vov A.A., Komarov V.V., Svetlov M.S. Application of the Uncertainty
Method for Analysis of Multi-Port Correlator Accuracy, Proc. of the 2017 IEEE Russia Section Young Researchers
in Electrical and Electronic Engineering Conf. St. Petersburg, Russia: IEEE, 2017, pp. 505-509.
42. Solopekina A.A., L'vov, A.A., Semezhev N., Vagarina N.S. Primenenie metoda neopredelennosti dlya
analiza pogreshnostey mnogopolyusnogo reflektometra [Application of the uncertainty method to analyze
the errors of a multi-pole reflectometer], Nadezhnost' i kachestvo: Sb. trudov. Mezhdunar. simp.
[Reliability and quality: Collection of papers. International symposium]: in 2 vol. Vol. 2. Penza: PGU,
2017, pp. 136-139.
43. L'vov A.A., Semezhev N., Solopekina A.A., Glukhova O.M. Analiz modeli mnogozondovoy
izmeritel'noy linii i raschet neopredelennostey izmereniya s ee pomoshch'yu [Analysis of the model of
a multi-probe measuring line and calculation of measurement uncertainties with its help], Vestnik
Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Upravlenie, vychislitel'naya
tekhnika i informatika [Bulletin of the Astrakhan State Technical University. Series: Management,
computing and informatics], 2019, No. 4, pp. 141-151.
44. L'vov A.A. Avtomaticheskiy izmeritel' parametrov SVCH dvukhpolyusnikov na osnove
mnogopolyusnika [Automatic meter of microwave parameters of two-terminal networks based on a
multi-terminal network], Izmeritel'naya tekhnika [Measuring equipment], 1996, No. 2, pp. 10-12.
45. L’vov A.A., Nikolaenko A.Yu., L’vov P.A. A Novel Vector Network Analyzer Using Combined Multi-
Port Reflectometer, Proc. of Microwave and Radio Electronics Week, 14th Conf. on Microwave Techniques.
Pardubice, Czech Republic: IEEE, 2015, pp. 183-187. DOI: 10.1109/COMITE.2015.7120230