PREDICTION OF FAULTS IN TECHNICAL SYSTEMS BASED ON THE SIMILARITY MODEL OF THE REMAINING USEFUL LIFE
Cite as: J. А. Korablev. Prediction of faults in technical systems based on the similarity model of the remaining useful life // Izvestiya SFedU. Engineering Sciences – 2024. – N. 6. - P. 142-155. doi: 10.18522/2311-3103-2024-6-142-155
Abstract
This paper demonstrates how to construct a complete Remaining Useful Life (RUL) estimation workflow,
including the steps of preprocessing, selecting trend features, constructing a health indicator by fusing sensors,
training RUL similarity estimators, and verifying the prediction performance. The method was tested in a
MATLAB demo program implementing this method for predicting the occurrence of faults in technical systems
(https://www.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-estimation.html) based
on data from the "PHM08 Challenge Data Set", NASA Ames Prognostics Data Repository
(http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames Research Center, Moffett Field, CA. The
method is focused on the use of reasonable technical characteristics of the equipment being estimated, which are
sufficiently covered in the reference literature. Therefore, the method gives good results when assessing equipment
whose operating conditions are close to the statistical average. This paper uses the Predictive Maintenance
Toolbox™ in MATLAB, which includes several specialized models developed for calculating RUL from various
types of measured system data. These models are useful when you have historical data and information, such as:
‒ failure histories of machines similar to the one to be diagnosed. The historical data for each member of the
data ensemble is fitted to a model of identical structure; ‒ a known threshold value of some condition indicator
indicating failure; ‒ data on how much time or how much use it took for similar machines to fail (service life).
RUL estimation models provide methods for training a model using historical data and using it to make a remaining
service life prediction. The term service life here refers to the useful life of a machine defined in terms of
any quantity used to measure the service life of a system. Similarly, time evolution can mean the evolution of a
value with usage, distance traveled, number of cycles, or another quantity that describes the service life. A general
workflow for using RUL estimation models is: ‒ create and configure the corresponding model object;
‒ train the estimation model using the available historical data; ‒ using test data of the same type as the available
historical data, estimate the RUL of the test component. It is also possible to use the test data recursively to
update the model as new data becomes available, i.e. track the evolution of the RUL prediction as new data
becomes available.
References
reduce equipment maintenance costs by 40%. Blog by Kirill Kostanetsky]. Available at:
https://nv.ua/techno/technoblogs/chto-takoe-prediktivnoe-obsluzhivanie-2476568.html.
2. Proactive Asset Management with IIoT and Analytics, ARC Advisory Group, January 15, 2015, By
Ralph Rio.
3. Reyli R., Shvays R. Otsenka nematerial'nykh aktivov [Evaluation of intangible assets]: transl. from
english. Moscow: ID «KVINTO-KONSALTING», 2005, 792 p.
4. Saxena A. and Goebel K. "PHM08 Challenge Data Set", NASA Ames Prognostics Data Repository.
Available at: http://ti.arc.nasa.gov/project/prognostic-data-repository. NASA Ames Research Center,
Moffett Field, CA, 2008.
5. Lyubimov I.V., Meshkov S.A. Statisticheskie metody kontrolya kachestva i nadezhnosti: ucheb. posobie
[Statistical methods of quality and reliability control: a tutorial]. Baltic State Technological University.
St. Petersburg., 2010, 96 p. ISBN 978-5-85546-522-8.
6. E.A., Mantserov S.A., Panov A.Yu. Prognozirovanie otkazov sistem avtomaticheskogo upravleniya
gazoperekachivayushchimi agregatami na osnove indeksa tekhnicheskogo sostoyaniya i stepeni riska
[Forecasting failures of automatic control systems of gas pumping units based on the technical condition
index and risk degree], Fundamental'nye issledovaniya [Fundamental research], 2015, No. 7-2,
pp. 309-313.
7. Lyubimov I.V., Meshkov S.A., Ushakov, A.P., Chalyy R.A. Metody i sredstva diagnostirovaniya
tekhnicheskikh sistem: ucheb. posobie [Methods and tools for diagnosing technical systems: a tutorial].
Baltic State Technological University. St. Petersburg., 2011, 120 p. ISBN 978-5-85546-863-8.
8. Kashnitskiy Yu.S., Ignatov D.I. Ansamblevyy metod mashinnogo obucheniya, osnovannyy na
rekomendatsii klassifikatorov [Ensemble method of machine learning based on classifier recommendations],
Machine Learning in Python, Journal of Machine Learning Research [Machine Learning in
Python, Journal of Machine Learning Research], 2011, 12, pp. 2825-2830.
9. Popova T.P. Ansambli modeley kak sovremennyy instrument analiza dannykh [Model ensembles as a
modern tool for data analysis], responsible for the release: dr. of econ. sc., Rector of the Ural State
University of Economics, 2017, 256 p.
10. Shishmarev V.Yu. Nadezhnost' tekhnicheskikh sistem: uchebnik dlya stud. vyssh. ucheb. zavedeniy
[Reliability of technical systems: textbook for students of higher educational institutions]. Moscow:
Izdatel'skiy tsentr «Akademiya», 2010, 304 p.
11. Dyuk V.A., Fomin V.V. Prognozirovanie vremennykh ryadov na osnove metodov DataMining [Forecasting
of time series based on DataMining methods], Izvestiya Sankt-Peterburgskogo
gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) [Bulletin of the St. Petersburg
State Technological Institute (Technical University)], 2012, No. 13, pp. 108-111.
12. Shakhanov N.I., Oskolkov V.M., Varfolomeev I.A., Yudina O.V. Prognozirovanie otkazov oborudovaniya
na osnove algoritmov mashinnogo obucheniya [Forecasting of equipment failures based on machine
learning algorithms], Voprosy obrazovaniya i nauki. Po materialam mezhdunarodnoy nauchnoprakticheskoy
konferentsii, 31 maya 2016 [Issues of education and science. Based on the materials of the
international scientific and practical conference, May 31, 2016], pp. 315-317.
13. Flakh P. Mashinnoe obuchenie. Nauka i iskusstvo postroeniya algoritmov, kotorye izvlekayut znaniya
iz dannykh [Machine learning. The science and art of building algorithms that extract knowledge from
data]. Moscow: DMK Press, 2015, 402 p.
14. Kormen T., Leyzerson Ch., Rivest R., Shtayn K. Algoritmy: postroenie i analiz [Algorithms: construction
and analysis]. 2nd ed.: transl. from engl. Moscow, 2005, 1296 p.
15. Makkonnell Dzh. Osnovy sovremennykh algoritmov [Fundamentals of modern algorithms]. 2nd ed.
Moscow: Tekhnosfera, 2004, 368 p.
16. Vadzinskiy R.N. Spravochnik po veroyatnostnym raspredeleniyam [Handbook of probability distributions].
St. Petersburg, 2001.
17. Chugreev V.L., Badanin D.A. Ispol'zovanie prognoznoy analitiki v informatsionno-analiticheskikh
sistemakh podderzhki prinyatiya resheniy [Using Predictive Analytics in Information and Analytical
Systems for Decision Support], Molodoy uchenyy [Young Scientist], 2016, No. 6, pp. 49-52.
18. Lipatov M. Pervyy v Rossii kompleks prediktivnoy analitiki dlya energeticheskogo i promyshlennogo
oborudovaniya [The first predictive analytics complex for energy and industrial equipment in Russia],
Ekspozitsiya Neft' Gaz [Expositsiya Neft Gas], 2016, No. 3 (49), pp. 82-83.
19. Prognoznaya analitika – sposob adaptatsii v novykh ekonomicheskikh realiyakh [Predictive analytics -
a way to adapt to new economic realities]. Available at: http://www.iksmedia.ru/articles/5292204-
Prognoznaya-analitika-sposob-adapta.html.
20. Kobl Dzheymi Baalis. Ob"edinenie istochnikov dannykh dlya predskazaniya ostavshegosya sroka
poleznogo ispol'zovaniya – avtomatizirovannyy metod dlya identifikatsii prognosticheskikh
parametrov [Combining data sources to predict remaining useful life - an automated method for identifying
prognostic parameters], 2010.