СРАВНИТЕЛЬНЫЙ АНАЛИЗ ЦЕНТРАЛИЗОВАННОГО И ДЕЦЕНТРАЛИЗОВАННОГО АЛГОРИТМОВ ДВИЖЕНИЯ СТРОЕМ БЛА МУЛЬТИКОПТЕРНОГО ТИПА

  • М.Ю. Медведев НИИ робототехники и процессов управления Южного федерального университета
  • В. Х. Пшихопов НИИ робототехники и процессов управления Южного федерального университета
Ключевые слова: Группа БЛА, формирование строя, централизованный алгоритм, децентрализованный алгоритм, групповое управление

Аннотация

Развитие робототехнических комплексов делает актуальным их групповое примене-
ние для решения различных задач. Эффективность выполнения задач обнаружения и опре-
деления координат объектов группой роботов существенно зависит от точности под-
держания заданного строя. В этой связи практический интерес представляет задача оп-
ределения алгоритмов планирования движения, обеспечивающих наибольшую точности
поддержания заданного строя. Данная статья посвящена исследованию точности под-
держания строя группой БЛА мультикоптерного типа с использованием централизованно-
го алгоритма планирования движения и децентрализованного алгоритма. В централизо-
ванном алгоритме используется ведущий БЛА, который передает свои координаты ведо-
мым БЛА. На основании полученных координат и заданной структуре строя ведомые БЛА
планируют свое движение. В децентрализованной систем соседние БЛА группы передают
свои координаты друг другу, на основании чего планируется движение отдельного БЛА.
Точность исследуется в зависимости от погрешностей навигационной системы и часто-
ты обновления данных о положении ведущего или соседних БЛА. Полагается, что БЛА
группы в дискретные моменты времени определяют свои координаты, используя внешнюю
навигационную систему. Централизованный и децентрализованный алгоритмы отрабаты-
ваются одинаковой системой управления движением. Алгоритмы исследуются в данной
статье методами численного моделирования. В процессе моделирования учитываются
модели кинематики, динамики и исполнительных механизмов, а также модели формирова-
ния погрешностей навигационной системы. Показано, что децентрализованный алгоритм
группового планирования движения обеспечивает более высокую точность по сравнению с
централизованным алгоритмом. Однако техническая реализация децентрализованного
алгоритма более сложна с точки зрения организации системы групповой связи. В центра-
лизованной систем должна быть реализована передача данных от ведущего БЛА ведомым.
В децентрализованной системе требуется реализовать сетевую связь.

Литература

1. Arteaga-Escamilla C.M., Castro-Linares R., Álvarez-Gallegos J. Leader–follower formation
with reduction of the off-tracking and velocity estimation under visibility constraints, International
Journal of Advanced Robotic Systems, 2021, Vol. 18 (610).
2. Sun F., Li H.,·Zhu W.,·Kurths J. Fixed-time formation tracking for multiple nonholonomic
wheeled mobile robots based on distributed observer, Nonlinear Dynamics, 2021, Vol. 106,
pp. 3331-3349.
3. Dong X., Yu B., Shi Z., Zhong Y. Time-Varying Formation Control for Unmanned Aerial Vehicles:
Theories and Applications, IEEE Transactions on Control Systems Technology, Vol. 23
(1), pp. 340-348.
4. Pack D.J., DeLima P., Toussaint G.J., York G. Cooperative control of UAVs for localization
of intermittently emitting mobile targets, IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 2009, Vol. 39 (4), pp. 959-970.
5. Bezruk G.G., Martynova L.A., Saenko I.B. Dinamicheskiy metod poiska antropogennykh
ob"ektov v morskom dne s ispol'zovaniem avtonomnykh neobitaemykh podvodnykh apparatov
[Dynamic Method of Searching Anthropogenic Objects in Use of Seabed with Autonomous
Underwater Vehicles], Tr. SPIIRAN [SPIIRAS Proceedings], 2018, Vol. 3 (58), pp. 203-226.
6. Shepeta A.P., Nenashev V.A. Tochnostnye kharakteristiki opredeleniya koordinat ob"ektov v
dvukhpozitsionnoy sisteme malogabaritnykh bortovykh RLS [Accuracy characteristics of object
location in a two-position system of small onboard radars], Informatsionnoupravlyayushchie
sistemy [Informatsionno-Upravliaiushchie Sistemy], 2020, Vol. 2, pp. 31-36.
7. Nenashev V.A., Shepeta A.P., Kryachko A.F. Fusion Radar and Optical Information in
MultiPosition on-Board Location Systems, 2020 Wave Electronics and its Application in Information
and Telecommunication Systems (WECONF), 2020, pp. 1-5. – DOI: 10.1109/
WECONF48837.2020.9131451.
8. Nenashev V.A., Khanykov I.G. Formation of Fused Images of the Land Surface from Radar
and Optical Images in Spatially Distributed On-Board Operational Monitoring Systems, Journal
of. Imaging, 2021, Vol .7 (251). Available at: https://doi.org/10.3390/jimaging7120251.
9. Nenashev V.A., Khanykov I.G. Formirovanie kompleksnogo izobrazheniya zemnoy
poverkhnosti na osnove klasterizatsii pikseley lokatsionnykh snimkov v mnogopozitsionnoy
bortovoy sisteme [Formation of Fused Images of the Land Surface from Radar and Optical
Images in Spatially Distributed On-Board Operational Monitoring Systems], Informatika i
avtomatizatsiya [Informatics and Automation], 2021, Vol. 20, No. 2, pp. 302-340.
10. Lewis M.A., Tan K.-H. High Precision Formation Control of Mobile Robots Using Virtual
Structures, Autonomous Robots, 1997, No. 4, pp. 387-403.
11. Tan K-H., Lewis M. Virtual Structures for High-Precision Cooperative Mobile Robotic Control,
Proc. of the IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems, 1996, pp. 132-139.
12. Morozova N.S. Virtual'nye formatsii i virtual'nye lidery v zadache o dvizhenii stroem gruppy
robotov [Virtual formations and virtual leaders in the task of moving a group of robots in formation],
Vestnik Sankt-Peterburgskogo universiteta. Seriya 10. Prikladnaya matematika //
Informatika. Protsessy upravleniya [Vestnik of Saint Petersburg University Applied Mathematics.
Computer Science. Control Processes], 2015, No. 1, pp. 135-149.
13. Endo T., Maeda R., Matsuno F. Analiz ustoychivosti roya geterogennykh robotov s
ogranichennym polem zreniya [Stability Analysis of Swarm Heterogeneous Robots with Limited
Field of View], Informatika i avtomatizatsiya [Informatics and Automation], 2020,
Vol. 19 (5), pp. 942-966.
14. Gayduk A.R., Mart'yanov O.V., Medvedev M.Yu., Pshikhopov V.Kh., Khamdan N., Farkhud A.
Neyrosetevaya sistema upravleniya gruppoy robotov v neopredelennoy dvumernoy srede [Neural
network based control system for robots group operating in 2-d uncertain environment],
Mekhatronika, avtomatizatsiya, upravlenie [Mekhatronika, Avtomatizatsiya, Upravlenie], 2020,
Vol. 21 (8), pp. 470-479.
15. Pshikhopov V.Kh., Medvedev M.Yu. Gruppovoe upravlenie dvizheniem mobil'nykh robotov v
neopredelennoy srede s ispol'zovaniem neustoychivykh rezhimov [Group control of autonomous
robots motion in uncertain environment via unstable modes], Trudy SPIIRAN [SPIIRAS
Proceedings], 2018, Issue 60, pp. 39-63.
16. Medvedev M., Pshikhopov V., Gurenko B., Hamdan N. Path planning method for mobile robot
with maneuver restrictions, Proc. of the International Conference on Electrical, Computer,
Communications and Mechatronics Engineering (ICECCME) 7-8 October 2021, Mauritius.
10.1109/ICECCME52200.2021.9591090.
17. Carlos A., Hebertt S., Jos´e A. Stability of Active Disturbance Rejection Control for Uncertain
Systems: a Lyapunov Perspective, International Journal of Robust Nonlinear Control, 2017,
Vol. 27, pp. 4541-4553. DOI: 10.1002/rnc.3812.
18. Vorotnikov V.I., Vokhmyanina A.V. Metod linearizuyushchey obratnoy svyazi v zadache
upravleniya po chasti peremennykh pri nekontroliruemykh pomekhakh [Feedback
Liniarization Method for Problem of Control of a Part of Variables in Uncontrolled Disturbances],
Tr. SPIIRAN [SPIIRAS Proceedings], 2018, Issue 6 (61), pp. 61-93.
19. Fel'dbaum A.A. O raspredelenii korney kharakteristicheskogo uravneniya sistemy regulirovaniya
[On the distribution of the roots of the characteristic equation of control systems], Avtomatika i
telemekhanika [Automation and Remote Control], 1948, No. 4, pp. 253-279.
20. Finaev V.I., Medvedev M.Yu., Pshikhopov V.K., Pereverzev V.A., Soloviev V.V. Unmanned
Powerboat Motion Terminal Control in an Environment with Moving Obstacles,
Mekhatronika, Avtomatizatsiya, Upravlenie, 2021, Vol. 22 (3), pp. 145-154. Available at:
https://doi.org/10.17587/mau.22.145-154.
21. Park B.-S., Yoo, S.-J. Adaptive Secure Control for Leader-Follower Formation of
Nonholonomic Mobile Robots in the Presence of Uncertainty and Deception Attacks, Mathematics,
2021, Vol. 9. Available at: https://doi.org/10.3390/math9182190.
22. Hirata-Acosta J., Pliego-Jiménez J., Cruz-Hernádez C., Martínez-Clark R. Leader-Follower
Formation Control of Wheeled Mobile Robots without Attitude Measurements, Applied Sciences,
2021, Vol. 11 (12), 5639. – https://doi.org/10.3390/app11125639.
23. Maghenem M., Loria A., Panteley E. Cascades-based leader-follower formation tracking and
stabilization of multiple nonholonomic vehicles, IEEE Transactions on Automatic Control,
Vol. 65 (8), pp. 3639-3646.
24. Wang Z., Wang L., Zhang H., Chen Q., Liu J. Distributed regular polygon formation control
and obstacle avoidance for non-holonomic wheeled mobile robots with directed communication
topology, IET Control Theory and Applications, 2020, Vol. 14 (9), pp. 1113-1122.
25. Sun J., Chen J. A survey on Lyapunov-based methods for stability of linear time-delay systems,
Frontiers of Computer Science, 2017, Vol. 11, pp. 555-567. Available at:
https://doi.org/10.1007/s11704-016-6120-3.
26. Hu J., Bhowmick P., Lanzon A. Group Coordinated Control of Networked Mobile Robots With
Applications to Object Transportation, IEEE Transactions on Vehicular Technology, 2021,
Vol. 70 (8), pp. 8269-8274. DOI: 10.1109/TVT.2021.3093157.
27. Arnold W.F., Laub A.J. Generalized Eigenproblem Algorithms and Software for Algebraic
Riccati Equations, Proceedings of the IEEE, 1984, Vol. 72 (12), pp. 1746-1754.
28. Pshikhopov, V., Medvedev, M. Multi-Loop Adaptive Control of Mobile Objects in Solving Trajectory
Tracking Tasks, Automation and Remote Control, 2020, Vol. 81 (11), pp. 2078-2093.
– https://doi.org/10.1134/S0005117920110090.
29. Stephen T. Thornton, Jerry B. Marion. Classical Dynamics of Particles and Systems. Brooks
Cole. 5th ed., 2003, 672 p. ISBN-10: 0534408966.
30. Pshikhopov V.Kh., Medvedev M.Yu., Gayduk A.R., Neydorf R.A., Belyaev V.E., Fedorenko R.V.,
Kostyukov V.A., Krukhmalev V.A. Sistema pozitsionno-traektornogo upravleniya robotizirovannoy
vozdukhoplavatel'noy platformoy: matematicheskaya model' [Positional trajectory control system of
a robotic aeronautical platform: mathematical model], Mekhatronika, avtomatizatsiya i upravlenie
[Mekhatronika, Avtomatizatsiya, Upravlenie], 2013, No. 6, pp. 14-21.
31. Götten F., Finger D.F., Havermann M. et al. Full configuration drag estimation of short-to-medium
range fixed-wing UAVs and its impact on initial sizing optimization, CEAS Aeronautical Journal,
2021, Vol. 12, pp. 589-603. Available at: https://doi.org/10.1007/s13272-021-00522-w.
32. Milne-Thomson L.M. Theoretical aerodynamics. Courier Corporation, 2012.
33. Li X., Qi G., Zhang L. Time-varying formation dynamics modeling and constrained trajectory
optimization of multi-quadrotor UAVs, Nonlinear Dynamics, 2021, Vol. 106, pp. 3265-3284.
Available at: https://doi.org/10.1007/s11071-021-06788-3.
34. Medvedev M., Pshikhopov V. Path Planning of Mobile Robot Group Based on Neural Networks,
Lecture Notes in Artificial Intelligence, 2020, pp. 51-62. Available at: https://doi.org/
10.1007/978-3-030-55789-8_5.
35. Ren X.X., Yang G.H. Noise covariance estimation for networked linear systems under random
access protocol scheduling, Neurocomputing, 2021, Vol. 455 (30), pp. 68-77.
36. Golnaraghi F., Kuo B.C. Automatic Control Systems. 9-th ed. JOHN WILEY & SONS, 2010,
944 p.
37. Diebold F. Elements of Forecasting (Fourth ed.). Thomson/South-Western, 2007, 366 p.
38. El-Sheimy N., Hou H., Niu X. Analysis and modeling of inertial sensors using Allan variance,
IEEE Transactions on Instrumentation and Measurement, 2008, Vol. 57 (1), pp. 140-149.
39. Consolini L., Morbidi F., Prattichizzo D., et al. Leader-follower formation control of nonholonomic
mobile robots with input constraints, Automatica, 2008, Vol. 44 (5), pp. 1343-1349.
40. Cocetti M., Tarbouriech S., Zaccarian L. High-Gain Dead-Zone Observers for Linear and
Nonlinear Plants, IEEE Control Systems Letters, 2019, Vol. 3 (2), pp. 356-361. DOI:
10.1109/LCSYS.2018.2880931.
41. Liu Y., Chen C., Wu H. et al. Structural stability analysis and optimization of the quadrotor
unmanned aerial vehicles via the concept of Lyapunov exponents, International Journal of
Advanced Manufacturing Technology, 2018, Vol. 94, pp. 3217-3227. Available at:
https://doi.org/ 10.1007/s00170-016-9311-z.
42. Ömürlü V.E., Büyükşahin U., Artar R. et al. An experimental stationary quadrotor with variable
DOF, Sadhana, 2013, Vol. 38, pp. 247-264. Available at: https://doi.org/10.1007/s12046-
013-0132-6.
43. Pshikhopov V.Kh., Medvedev M.Yu., Gurenko B.V. Algoritmy terminal'nogo upravleniya
podvizhnymi ob"ektami mul'tikopternogo tipa [Algorithms for terminal control of moving objects
of multicopter type], Mekhatronika, avtomatizatsiya i upravlenie [Mekhatronika,
Avtomatizatsiya, Upravlenie], 2019, Vol. 20, No. 1, pp. 44-51. 10.17587/mau.20.44-51.
44. Bayindir L. A review of swarm robotics tasks, Neurocomputing, 2016. Available at: https://doi.org/
10.1016/j.neucom.2015.05.116.
45. Shi Y. Particle swarm optimization: Developments, applications and re- 23 sources, Evolutionary
Computing, 2001 IEEE International Conference on, 2001, Vol. 1, pp. 81-86.
46. Bruce P.C., Bruce A.G. Practical Statistics for Data Scientists. 1-st ed. O’Reilly Media. USA,
2016.
47. Zhou P., Fang X., Fang Y., He R., Long Y. and Huang G. Beam Management and Self-Healing
for mmWave UAV Mesh Networks, IEEE Transactions on Vehicular Technology, 2019,
Vol. 68 (2), pp. 1718-1732. DOI: 10.1109/TVT.2018.2890152.
48. Li N., Cürüklü B., Bastos J., Sucasas V., Fernandez J.A.S., Rodriguez J. A Probabilistic and
Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks,
Sensors, 2017, Vol. 17, 1022. Available at: https://doi.org/10.3390/s17051022.
49. Kostjukov V., Medvedev M., Pshikhopov V. Method for Optimizing of Mobile Robot Trajectory
in Repeller Sources Field, Informatics and Automation, 2021, Vol. 20 (3), pp. 690-726.
50. Medvedev M.Yu., Kostyukov V.A., Pshikhopov V.Kh. Optimizatsiya dvizheniya mobil'nogo
robota na ploskosti v pole konechnogo chisla istochnikov-repellerov [Optimization of mobile
robot movement on a plane with finite number of repeller sources], Tr. SPIIRAN [SPIIRAS
Proceedings], 2020, Issue 19 (1), pp. 43-78. Available at: https://doi.org/10.15622/
10.15622/sp.2020.19.1.2.
51. Sánchez-Ibáñez J.R., Pérez-del-Pulgar C.J., García-Cerezo A. Path Planning for Autonomous
Mobile Robots: A Review, Sensors, 2021, Vol. 21, pp. 7898. Available at: https://doi.org/
10.3390/s21237898.
52. Mac T.T., Copot C., Tran D.T., De Keyser R. Heuristic approaches in robot path planning:
A survey, Robotics and Autonomous Systems, 2016, Vol. 86, pp. 13-28.
Опубликован
2022-04-21
Выпуск
Раздел
РАЗДЕЛ II. СИСТЕМЫ УПРАВЛЕНИЯ И МОДЕЛИРОВАНИЯ