SHAPING OF CONTOURED-BEAM ANTENNA MAIN LOBE BY PROFILING OF REFLECTOR ANTENNA
Abstract
In satellite communication complexes, it is required to ensure a given level of the gain of the space
antenna in a given serviced area. A lower level of gain beyond this area is also required. The boundary of
the coverage area may have a complex shape that does not change during the operation of the communication
system. To meet these requirements, reflector antennas with a profiled reflector are used. The law
of profiling the reflector surface is described by smooth analytical functions. However, when forming a
contour lobe with a more complex shape, the required phase distribution may have discontinuities during
the transition through the period 2π. These gaps cannot be eliminated by smooth functions without distortion.
In this case, the known approaches to profiling reflectors of reflector antennas do not allow obtaining
a radiation pattern with a given quality. The goal of the work was constructing a reflector of a reflector
antenna, which provides the formation of a radiation pattern with specified parameters. To achieve
this goal, the following tasks have been solved: 1. Development of an algorithm for profiling the reflector
of a reflector antenna, taking into account the shape of the boundary of the serviced area and taking into
account the given law of distribution of the gain; 2. Conducting numerical simulations on the construction
of the reflector profile. In the course of the research, an algorithm has been developed that allows you to
obtain the reflector profile of a reflector antenna. This reflector antenna generates a field distribution at
the aperture corresponding to the radiation pattern with the required parameters. To do this, the calculation
of the field distribution on the plane was performed, and the surface of the reflector was synthesized
based on the calculation results. Numerical simulations have confirmed the possibility of constructing a
reflector antenna that forms a radiation pattern with specified parameters.
References
bifocal two-mirror systems], Zhurnal radio-elektroniki [Journal of Radio Electronics], 2018, No. 9.
DOI: 10.30898/1684 1719.2018.9.13.
2. Kaloshin V.A., Frolova E.V. Sintez trekhzerkal'noy sistemy s zadannoy formoy glavnogo zerkala po
fazovomu frontu i zakonu otobrazheniya [Synthesis of a three-mirror system with a given shape of the
main mirror along the phase front and the law of mapping], Radiotekhnika i elektronika [Journal of
Communications Technology and Electronics], 2019, Vol. 64, No. 9, pp. 887-890. DOI:
10.1134/S0033849419080072.
3. Kaloshin V.A., Popov A.P. Geometroopticheskiy sintez ostronapravlennykh dvukhzerkal'nykh antenn
[Geometrooptic synthesis of highly directional two-reflector antennas], Radiotekhnika i elektronika
[Journal of Communications Technology and Electronics], 1981, No. 9, pp. 1816-1818.
4. JiXiang Wan, Tao Yan, Feng Wang. A Hybrid Reflector Antenna for Two Contoured Beams With Different
Shapes, IEEE Antennas and wireless propagation letters, 2018, Vol. 17, No. 7, pp. 1171-1175.
DOI: 10.1109/LAWP.2018.2836927.
5. Bylov A.A., Salomatov Yu.P. Diagrammoobrazuyushchaya skhema odnozerkal'noy antenny
Kudiapazona na osnove planarnoy fazirovannoy antennoy reshetki otrazhatel'nogo tipa [Diagramming
diagram of a single-mirror Ku-band antenna based on a planar phased antenna array of reflective type],
Doklady TUSURa [Proceedings of TUSUR University], 2016, Vol. 19, No. 3, pp. 11-15. DOI:
10.21293/1818 0442 2016 19 3 11 15.
6. Zhenqin Zheng, Long Zhang, Xianting Xie, Qingwei Ji, Hui Chen, Chunxu Mao. Single-Feed
Reflectarray Antenna with Eight Beams for Satellite Communications, IEEE 4th International Conference
on Electronic Information and Communication Technology, 2021, pp. 658-661. DOI:
10.1109/ICEICT53123.2021.9531087.
7. Bankov S.E, Kaloshin V.A., Frolova E.A. Optimizatsiya planarnykh zerkal'nykh sistem po
sovokupnosti pokazateley kachestva [Optimization of planar reflector systems for a set of quality indices],
Radiotekhnika i elektronika [Journal of Communications Technology and Electronics], 2014,
Vol. 59, No. 11, pp. 1090-1101. DOI: 10.7868/S0033849414100027.
8. Yukhanov Y. and Privalova T. Synthesis of a Twist Structure from a Given Multibeam Scattering Diagram,
2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Venice,
Italy, 2023, pp. 135-138. DOI: 10.1109/ICEAA57318.2023.10297754.
9. Florencio R., Encinar J.A., Boix R.R., Losada V., and Toso G. Reflectarray antennas for dual polarization
and broadband telecom satellite applications, IEEE Transactions on antennas and propagation,
2015, Vol. 63, No. 4, pp. 1234-1246. DOI: 10.1109/TAP.2015.2391279.
10. Daniel R. Prado, Manuel Arrebola, Marcos R. Pino, George Goussetis. Contoured-Beam Dual-Band
Dual-Linear Polarized Reflectarray Design Using a Multiobjective Multistage Optimization, IEEE
Transactions on antennas and propagation, 2020, Vol. 11, No. 68, P. 7682-7687. DOI:
10.1109/TAP.2020.2993014.
11. Vorontsov M.A., SHmal'gauzen V.I. Printsipy adaptivnoy optiki [Principles of adaptive optics]. Moscow:
Nauka, 1985, 336 p.
12. Uzolin E.Yu., Kryukov I.G. Sintez profilya poverkhnosti reflektorov odnozerkal'nykh konturnykh
antenn s ispol'zovaniem polinomov TSernike [Synthesis of the surface profile of reflectors of singlemirror
contour antennas using Zernike polynomials], Doklady Tomskogo gosudarstvennogo
universiteta sistem upravleniya i radioelektroniki [Reports of Tomsk State University of Control Systems
and Radioelectronics], 2012, No. 3, pp. 92-95.
13. Mishchenko E.N., Mishchenko S.E. Rekurrentnyy algoritm vychisleniya radial'nykh funktsiy polinomov
Tsernike [Recurrent Algorithm for Calculation of the Radial Functions of Zernike Polynomials], Vestnik
RGUPS [Bulletin of the Rostov State University of Railways], 2017, No. 1, pp. 121-127.
14. Bezuglov D.A., Zabrodin R.A. Metodika approksimatsii gibkogo adaptivnogo zerkala ogranichennym
chislom polinomov Tsernike [Metodika approksimacii gibkogo adaptivnogo zerkala ogranichennym
chislom polinomov Cernike], Optika atmosfery i okeana [Optics of the atmosphere and ocean], 2006,
Vol. 19, No. 9, pp. 810-814.
15. Manuilov B.D. Bashly P.N. Bezuglov Yu.D. Algoritm upravleniya mnogofunktsional'nymi antennymi
reshetkami na osnove metoda partsial'nykh diagramm [Algorithm for controlling multifunctional antenna
arrays based on the method of partial diagrams], Antenny [Antennas], 2005, No. 9, pp. 72-81.
16. Zelkin E.G., Sokolov V.G. Metody sinteza antenn [Methods of antenna synthesis]. Moscow: Sovetskoe
radio, 1980, 295 p.
17. Kaloshin V.A., Popov A.P. O sinteze dvukhzerkal'nykh antenn po amplitudnoy diagramme
napravlennosti [On the synthesis of two-reflector antennas by amplitude pattern], Radiotekhnika i
elektronika [Journal of Communications Technology and Electronics], 1982, No. 6, pp. 1110-1119.
18. Zelkin E.G., Kravchenko V.F., Gusevskiy V.I. Konstruktivnye metody approksimatsii v teorii antenn
[Constructive methods of approximation in antenna theory]. Moscow: SAYNS-PRESS, 2005, 512 p.
19. Rafael A. Penchel, José R. Bergmann, Fernando J. S. Moreira. Shaping Single Offset Reflector Antennas
Using Local Axis-Displaced Confocal Quadrics, Hindawi Publishing Corporation International
Journal of Antennas and Propagation, 2016, pp. 1-9. DOI: 10.1155/2016/4715681.
20. Venetskiy A.S., Kaloshin V.A. Fazovoe, luchevoe i amplitudnoe raspredelenie polya v
osesimmetrichnoy dvukhzerkal'noy teleskopicheskoy sisteme pri smeshchenii obluchatelya iz fokusa
[Phase, radial and amplitude distribution of the field in an axisymmetric two-reflector telescopic system
when the irradiator is displaced from focus], Reports of the VI All-Russia conference «Radar and
radio communication». Moscow, 2012, Vol. 2, pp. 250-254.
21. Semenov B.V., Chernykh N.I., Pleshchev V.M. New method of reflector surface shaping to produce a
prescribed contour beam, Ural mathematical journal, 2017, Vol. 3, No. 2, pp. 143-151. DOI:
10.15826/umj.2017.2.015.
22. Zanin K.M. Kriteriy effektivnosti primeneniya antenn s konturnymi diagrammami napravlennosti v
sostave bortovykh kompleksov sistem sputnikovoy svyazi [The Criterion of the Efficiency of Use of
Antennas with Contour Beams in Satellite Communication Systems], Sistemy upravleniya, svyazi i
bezopasnosti [Systems of Control, Communication and Security], 2024, No. 2, pp. 1-13. DOI:
10.24412/2410-9916-2024-2-001-013.
23. Poulton G.T., Hay S.G. Shaped reflector synthesis by successive projections, IEEE Antennas and
propagation Society International Symposium, 1992 Digest, pp. 363-366. DOI:
10.1109/APS.1992.221924.
24. Shishlov A.V. Zerkal'nye antenny s konturnymi diagrammami napravlennosti – effektivnost' i
predel'nye vozmozhnosti [Reflector antennas with contoured beams: efficiency and limiting capability],
Radiotekhnika [Radio engineering], 2006, No. 4, pp. 45-50.