INVESTIGATION OF THE EFFECT OF IMPURITY PHASES OF THE FEEDSTOCK ON THE PROPERTIES OF FERROELECTRIC CERAMICS OF THE PZT SYSTEM

  • М.А. Marakhovskiy Southern Federal University
  • L.А. Dykina Southern Federal University
  • V.V. Fil Southern Federal University
  • А.А. Panich Southern Federal University
Keywords: Ferroelectric material, feedstock, impurity phase, microstructure, specific stress sensitivity

Abstract

In the process of mass production of ferroelectric materials, impurities of various types and concentrations
are periodically observed in the feedstock. The aim of the study was to determine the effect of
impurity phases present in the feedstock on the dielectric and electrophysical properties of ferroelectric
ceramics. In this work, the basic raw materials components included in the lead zirconate - titanate system
for the presence of impurity components were studied by spectral analysis. The results revealed a group of
impurity phases (Sb, Na, Bi, K, Fe) of different concentrations. The model object of the study was an industrially
produced ferroelectric material with a perovskite structure and the chemical formula
Pb0,95Sr0,05(Zr0,53Ti0,47)O3 + 1% Nb2O5. The objective of the study was the dosed introduction of impurity
alloying additives into the composition of the initial ferroelectric material in order to possibly change the
final properties. The study established the relevance of the dosed introduction of K and Na impurities at a
concentration of 1-2 % into the PZT system in order to reduce the values of relative permittivity by 40-45 %. The dependences of the formed ceramic structure on the introduced impurity alloying phases have been
established by scanning electron microscopy. The regularities of the "type of impurity additive – microstructure
– properties" have been established. As a result of the study, the effectiveness of dosed administration
of impurity alloying additives K and Na in order to modify the properties of ferroelectric ceramics
of the PZT system was confirmed. Such impurity alloying leads to an increase in the values of the specific
voltage sensitivity (g33) to 34-37 mV·m/N. Ferroelectric materials of this format are of high practical
interest for the creation of acoustic transducers operating in reception mode.

References

1. Haun M.J., Furman E., Jang S.J. et al. Thermodynamic theory of PbTiO3, Journal of Applied Physics,
1987, 62 8, pp. 3331-3338.
2. Malykhin A.Yu., Dykina L.A., Oparina A.E. [i dr.]. Patent № 2024620147 Rossiyskaya Federatsiya.
11.01.2024 [Patent No. 2024620147 Russian Federation. 11.01.2024].
3. Bhatti H.S., Hussain S.T., Khan F.A., Hussain S. Synthesis and induced multiferroicity of perovskite
PbTiO3; a review, Appl. Surf. Sci., 2016, 367, 291.
4. Wight J. Cellular Ceramics–Structure Manufacturing, Properties and Applications. Wiley-VCH,
Weinheim, 2005.
5. Pabst W., et al. Processing, microstructure, properties, applications and curvature-based classification
schemes of porous ceramics, Alan Newton, ed. NY, Nova Science Publishers Inc., 2017.
6. Lee S.H. et al. Fabrication of porous PZT-PZN piezoelectric ceramics with high hydrostatic figure of
merits using camphene-based freeze casting, J. Am. Ceram. Soc., 2007, 90 (9), 2807. DOI:
10.1111/j.1551-2916.2007.01834.x.
7. Zeng T. et al. Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics, J.
Eur. Ceram. Soc., 2025 (2007), 27 (4). DOI: 10.1016/j.jeurceramsoc.2006.05.102.
8. IEEE standard on piezoelectricity, in ANSI/IEEE Std. NY: The Institute of Electrical and Electronics
Engineers Inc., 1988. DOI: 10.1109/IEEESTD.1988.79638.
9. Shvetsova N.A. et al. Method of electromechanical characterization of ferroelectric materials, Ferroelectrics,
2020, 561 (1), 100. DOI: 10.1080/00150193.2020.1736921.
10. Aleshin V.A. et al. Piezoelectric properties of layered bismuth-containing ferroelectric ceramics with a
high degree of texture, J. Tech. Phys., 1989, 59, 152. DOI: 10.1080/00150190211810.
11. Tret'yakov Yu.D. Tverdofaznye reaktsii [Solid-phase reactions]. Moscow: Khimiya, 1978, 360 p.
12. Materialy p'ezokeramicheskie. Tekhnicheskie usloviya (otraslevoy standart) OST 110444 – 87
[Piezoceramic materials. Technical conditions (industry standard) OST 110444 – 87]. Moscow, 1987.
13. Fesenko E.G., Dantsiger A.Ya., Razumovskaya O.N. Novye p'ezokeramicheskie materialy [New
piezoceramic materials]. Rostov-on-Don: Izd-vo Rostov. un-ta, 1983.
14. Panich A.A., Marakhovskiy M.A., Motin D.V. Kristallicheskie i keramicheskie p'ezoelektriki [Crystalline
and ceramic piezoelectrics], Inzhenernyy vestnik Dona [Engineering Bulletin of the Don], 2011,
No. 1.
15. Yamada H. Pressureless sintering of PMN-PT ceramics, Journal of the european ceramic society,
1999, 19 (6-7), pp. 1053-1056.
16. Lente M.H., Zanin A.L., Assis S.B., Santos I.A., Garcia D., Eiras J.A. Ferroelectric domain dynamics
in PMN-PT ceramics, Ferroelectrics. Gordon and Breach Science Publishers, 2003, 296, pp. 149-155.
17. Liou Y.C. Stoichiometric perovskite PMN-PT ceramics produced by reaction-sintering process, Materials
science and engineering: B, 2003, 103 (3), pp. 281-284.
18. Sharapov V.M., Minaev V.G., Sotula Zh.V., Kunitskaya L.G. Elektroakusticheskie preobrazovateli
[Electroacoustic transducers]. Moscow: Tekhnosfera, 2013, 296 p.
19. Bogush M.V. P'ezoelektricheskoe priborostroenie. T. III. P'ezoelektricheskie datchiki dlya
ekstremal'nykh usloviy ekspluatatsii [Piezoelectric instrument making. Vol. III. Piezoelectric sensors
for extreme operating conditions]. Rostov-on-Don: Izd-vo SKNTS VSh, 2006, 335 p.
20. Belinkur D., Kerran D., Zhaffe G. P'ezoelektricheskie i p'ezomagnitnye materialy i ikh primenenie v
ul'trazvuke [Piezoelectric and piezomagnetic materials and their application in ultrasound],
Fizicheskaya akustika [Physical acoustics], Vol. 1, Part A., ed. by U. Mezona. Moscow: Mir, 1966,
pp. 204-324.
21. Anan'eva A.A. Keramicheskie priemniki zvuka [Ceramic sound receivers]. Moscow, 1963.
22. Marakhovskiy M.A., Marakhovskiy V.A., Miryushchenko E.A., Panich E.A. Issledovanie vozmozhnosti
sozdaniya novykh polifaznykh p'ezomaterialov dlya gidroakusticheskikh preobrazovateley. GA-2018
[Study of the possibility of creating new polyphase piezoelectric materials for hydroacoustic transducers.
GA-2018]. Saint Petersburg, 2018, 616 p.
23. Marakhovskiy M.A., Nesterov A.A., Svirskaya S.N., Panich A.E. Izmenenie mekhanizma spekaniya
poroshkov p'ezomaterialov, kak sposob snizheniya temperatury formirovaniya plotnykh
keramicheskikh karkasov [Changing the sintering mechanism of piezoelectric material powders as a
way to reduce the formation temperature of dense ceramic frameworks], Inzhenernyy vestnik Dona
[Engineering Bulletin of the Don], 2013, No. 2.
Published
2024-10-08
Section
SECTION III. ELECTRONICS, NANOTECHNOLOGY AND INSTRUMENTATION