PRELIMINARY WAVELET PROCESSING OF FINANCIAL DATA SERIES IN THE WOLFRAM MATHEMATICA SYSTEM
Abstract
Any time series is a combination of useful information and noise. Therefore, in the analysis of financial
time series, one of the key points is the preprocessing of data in order to reduce the noise component.
One of the promising ways to clean up the time series is threading – decomposing the signal into a wavelet
spectrum to a given level, zeroing out those wavelet decomposition coefficients whose values are less than
a certain threshold value, and subsequent wavelet reconstruction of the signal using approximating and
refined detailing coefficients at each level. Tresholding is carried out using modern software tools, among
which researchers most often prefer the Matlab environment. This paper presents a demonstration of the
capabilities of the Wolfram Mathematica computer mathematics system in the preliminary processing of
financial data. Wolfram Mathematica has powerful functionality that allows high-quality processing of
time series. The system contains a large collection of wavelet families, multiple variants of discrete and
continuous wavelet transformations. The history of Sberbank's daily stock quotes over the past 3 years was
chosen as the object of the study. An analysis of the results showed that the quality of signal purification is
influenced by the choice of a basic wavelet – in our case, the use of a 6th-order Daubechies wavelet
turned out to be preferable. The maximum signal-to-noise ratio is achieved with rigid threshold processing
with a "SURELevel" threshold. The conducted studies have shown that wavelet tresholding over
the detailing coefficients of the wavelet decomposition is an effective method of suppressing outliers and
fluctuations of the time series. The cleared signal repeats the shape of the original signal, all peaks are
well expressed. At the same time, more accurate forecast values are obtained in the short-term forecast
References
on information theory, 1990, 36 (5), pp. 961-1005.
2. He T., Nguyen T. Wavelet Analysis and Applications in Economics and Finance, Scholarship, 2015,
26. Available at https://www.rroij.com/open-access/wavelet-analysis-and-applications-in-economicsand-
finance.php?aid=62323&view=mobile.
3. Chaovalit P., Gangopadhyay A., Karabatis G. and Chen Z. Discrete wavelet transform-based time
series analysis and mining, ACM Comput. Surv., 2011, 43, 2, Article 6, 37 p. Available at:
doi.acm.org/10.1145/1883612.1883613.
4. Kropotov Yu.A., Belov A.A., Proskuryakov A.Yu. Obrabotka vremennykh ryadov s primeneniem
veyvlet-preobrazovaniy dlya povysheniya tochnosti predstavleniya informatsii [Processing of time series
using wavelet transforms to improve the accuracy of information presentation], Transportnoe
mashinostroenie [ransport engineering], 2018, No. 8 (69). Available at: https://cyberleninka.ru/article/
n/obrabotka-vremennyh-ryadov-s-primeneniem-veyvlet-preobrazovaniy-dlya-povysheniya-tochnostipredstavleniya-
informatsii (accessed 22 April 2024).
5. Belov A.A., Proskuryakov A.Yu. Sglazhivanie vremennykh ryadov na osnove veyvlet-preobrazovaniya
v sistemakh avtomatizirovannogo ekologicheskogo monitoringa [Smoothing of time series based on
wavelet transform in automated environmental monitoring systems], Metody i ustroystva peredachi i
obrabotki informatsii [Methods and devices for information transmission and processing], 2010, No. 1
(12), pp. 21-24.
6. Taranenko Y.K. Methods of Discrete Wavelet Filtering of Measurement Signals: an Algorithm for
Choosing a Method, Meas Tech., 2022, 64, pp. 801-808. Available at: https://doi.org/10.1007/s11018-
022-02007-6.
7. Shaikh W., Syed F., Pandhiani S. & Solangi M. Wavelet Decomposition Impacts on Traditional Forecasting
Time Series Models, Computer Modeling in Engineering & Sciences, 2022, Vol. 130, pp.
1517-1532. DOI: 10.32604/cmes.2022.017822.
8. Lee H.Y., Beh W.L. & Lem K.H. Wavelet as a Viable Alternative for Time Series Forecasting, Austrian
Journal of Statistics, 2020, 49, pp. 38-47.
9. Benrhmach G., Namir K., Bouyaghroumni J. & Namir A. Financial time series prediction using wavelet
and artificial neural network // Journal of Mathematical and Computational Science, 2021, Vol. 11,
No. 5, pp. 5487-5500. 10.28919/jmcs/5978.
10. Boubaker H., Canarella G., Gupta R. et al. A Hybrid ARFIMA Wavelet Artificial Neural Network
Model for DJIA Index Forecasting, Comput., 2023, Econ 62, pp. 1801-1843. Available at:
https://doi.org/10.1007/s10614-022-10320-z.
11. Du B., Barucca P. Image Processing Tools for Financial Time Series Classification. Available at:
https://doi.org/10.48550/arXiv.2008.06042, 2020.
12. Lee G., Gommers R., Waselewski F., Wohlfahrt K. & Aaron PyWavelets: A Python package for wavelet
analysis, Journal of Open Source Software, 2019, 4. 1237. 10.21105/joss.01237.
13. Manonina I.V. Obrabotka detaliziruyushchikh veyvlet-koeffitsientov dlya povysheniya tochnosti
reflektometricheskikh izmereniy [Processing of detailing wavelet coefficients to improve the accuracy
of reflectometric measurements], Nauchnyy vestnik MGTU GA [Scientific Bulletin of MSTU GA],
2016, No. 5. Available at: https://cyberleninka.ru/article/n/obrabotka-detaliziruyuschih-veyvletkoeffitsientov-
dlya-povysheniya-tochnosti-reflektometricheskih-izmereniy (accessed 22 April 2024).
14. D'yakonov V.P. Veyvlety. Ot teorii k praktike [Wavelets. From theory to practice]. 2nd ed. Moscow:
SOLON-Press, 2010, 400 p.
15. Mallat S.G. A Theory For Multiresolution Signal Decomposition: The Wavelet Representation, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1989, No. 11, pp. 674-693.
16. Moskovskiy S.B., Sergeev A.N., Lalina N.A. Ochistka signala ot shumov s ispol'zovaniem veyvletpreobrazovaniya
[Signal cleaning from noise using wavelet transform], Universum: Tekhnicheskie
nauki [Universum: Technical sciences], 2015, No. 2 (15). Available at: http://7universum.com/ru/
tech/archive/item/1958.
17. Moskovskiy S.B., Sergeev A.N., Sidorova E.I., Marudov A.A. Metody veyvlet-analiza v zadachakh
obrabotki eksperimental'nykh dannykh [Wavelet Analysis Methods in Experimental Data Processing
Problems], EESJ, 2019, No. 4-4 (44). Available at: https://cyberleninka.ru/article/n/metody-veyvletanaliza-
v-zadachah-obrabotki-eksperimentalnyh-dannyh.
18. Wavelet Analysis. Available at: https://reference.wolfram.com/language/guide/Wavelets.html.
19. Krotkikh S., Kirichenko L. Analysis of event-related potentials of eeg signal using discrete wavelet
transform, Radio Electronics, Computer Science, Control, 2012. 10.15588/1607-3274-2011-2-15.
20. Miftakhova M.E., Panasyuk M.V. Veyvlet-analiz dinamiki regional'noy sotsial'no-ekonomicheskoy
sistemy [Wavelet analysis of the dynamics of a regional socio-economic system], Uchenye zapiski
Kazanskogo gosudarstvennogo universiteta. Seriya «Estestvennye nauki» [Scientific notes of Kazan
State University. Series "Natural sciences"], 2009, Vol. 151, Issue 1, pp. 247-262.