CLASSIFICATION OF THE DEGREE OF PARAMETER CHANGE IN REAL TIME BASED ON TIME SERIES POINT CLOUD ANALYSIS

  • S.I. Klevtsov Southern Federal University
Keywords: Identification, condition, evaluation, technical object, parameter, microcontroller classification

Abstract

The task of building a model for assessing the performance of a technical object has many applications
in the field of controlling various hazardous situations. The need for advanced monitoring of the
technical object state to prevent and control the course of abnormal situations in order to eliminate them
with minimal consequences makes the statement and fulfillment of this task relevant and timely. To perform
the assessment of the state of the technical object it is advisable to use simple models that allow to
obtain the result in real time without significant load on the microcontroller control system. The paper
considers the construction of a model for classifying the dynamics of change in the parameter of a technical
object, which will allow you to predict the change in its state in the process of assessing the degree
of serviceability of the object. The data reflecting the change of parameters in real time and presented in
the form of time series of parameter values are used. The change of the object parameter in time is fixed
with the help of a time window, which moves along the time series, cutting out of the set of initial data a
subset with an unchanged number of time samples. To classify the dynamics of parameter variation, it is proposed to use a representation of the time window points in the form of a Poincaré plot, which is actually
a special type of repetition plot or a type of scatter plot. The ellipse compression factor (ellipticity) is
used as a criterion, which encompasses the point cloud formed during the construction of the scatter diagram,
for the time series of the technical parameter. A methodology for training and using the model,
including the formation of classes of states of the dynamics of the object parameter and the calculation of
criteria, is developed. The model has been tested. The model provides the realization of procedures for
real-time detection of the possibility of an abnormal situation at an early stage of its development with the
help of a microprocessor module located at the lower level of the object monitoring system.

References

1. Bukov V.N. Adaptivnye prognoziruyushchie sistemy upravleniya poletom [Adaptive predictive flight
control systems]. Moscow: Nauka, Gl. red. fiz.-mat. lit., 1981, 232 p.
2. Klevtsova A.B., Klevtsov G.S. Modeli parametricheskoy ekspress-otsenki sostoyaniya tekhnicheskogo
ob"ekta [Models of parametric express-assessment of the state of a technical object], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2008, No. 11 (88), pp. 15-19.
3. Vasil'ev V.V., Grezdov G.I., Simak L.A. i dr. Modelirovanie dinamicheskikh sistem: Aspekty
monitoringa i obrabotki signalov [Modeling of dynamic systems: Aspects of monitoring and signal
processing], ed. by V.V. Vasil'eva. Kiev: NAN Ukrainy, 2002, 344 p.
4. Steblev Yu.I., Susarev S.V., Bykov D.E. The principles of designing automated systems for diagnostic
monitoring of the engineering structures of hazardous production objects, Russian Journal of
Nondestructive Testing, April 2015, Vol. 51, Issue 4, pp. 185-197.
5. Detlev W. Gross. Partial Discharge Measurement and Monitoring on Rotating Machines, IEEE Int.
Sym. On Elect. Insul, Boston MAUSA, April 7-10, 2002, pp. 33-41.
6. Vovk S.P., Ginis L.А. Modelling and forecasting of transitions between levels of hierarchies in
Difficult formalized systems, European Researcher, 2012, Vol. (20), No. 5-1, pp. 541-545.
7. Klevtsov S.I., Klevtsova A.B., Burinov S.V. Model' parametricheskoy kachestvennoy ierarkhicheskoy
otsenki sostoyaniya tekhnicheskoy sistemy [Model of parametric qualitative hierarchical assessment of
the state of a technical system], Inzhenernyy vestnik Dona [Engineering Bulletin of the Don], 2015,
No. 3. Available at: ivdon.ru/ru/magazine/archive/n3y2015/3088.
8. Matuszewski J. Application of clustering methods for recognition of technical objects, Modern
Problems of Radio Engineering, Telecommunications and Computer Science (TCSET) – 2010
International Conference, 2010, pp. 39-40.
9. Lihua Sun, Yingjun Guo, Haichao Ran. A New Method of Early Real-Time Fault Diagnosis for
Technical Process, Electrical and Control Engineering (ICECE), 2010 International Conference,
Wuhan, China, 2010, pp. 4912-4915.
10. Vasil'ev V.V. Sovremennye problemy komp'yuternogo monitoringa v energetike [Modern problems of computer
monitoring in power engineering], Izvestiya TRTU [Izvestiya TSURE], 2001, No. 3, pp. 99-120.
11. Klevtsova A.B. Integral'naya otsenka sostoyaniya ob"ekta monitoringa [Integral assessment of the state
of the monitoring object], Izvestiya TRTU [Izvestiya TSURE], 2004, No. 2 (37), pp. 58-65.
12. Klevtsov S.I. Predvaritel'naya otsenka sostoyaniya sovokupnosti parametrov tekhnicheskogo ob"ekta s
ispol'zovaniem intellektual'nogo mikroprotsessornogo modulya [Preliminary assessment of the state of
a set of parameters of a technical object using an intelligent microprocessor module], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 5 (106), pp. 43-48.
13. Klevtsov S.I. Prognozirovanie izmereniya sostoyaniya parametrov tekhnicheskogo ob"ekta s
pomoshch'yu intellektual'nogo mikroprotsessornogo modulya [Forecasting the measurement of the
state of the parameters of a technical object using an intelligent microprocessor module], Problemy
razrabotki perspektivnykh mikro- i nanoelektronnykh sistem – 2010: Sb. trudov [Problems of development
of promising micro- and nanoelectronic systems - 2010: Collection of works]. Moscow: IPPM
RAN, 2010, pp. 619-622.
14. Krivosheev I.A., Rozhkov K.E., Simonov N.B. Complex Diagnostic Index for Technical Condition
Assessment for GTE, International Conference on Industrial Engineering, ICIE, 2017, 2017, 206,
pp. 176-181.
15. Jerzy Hoja, Grzegorz Lentka. A family of new generation miniaturized impedance an analyzers for
technical object diagnostics, Metrology and Measurement Systems, 2013, Vol. XX, No. 1.
16. P'yavchenko O.N., Gorelova G.V., Bozhenyuk A.V., Klevtsov S.I., Klevtsova A.B. Metody i algoritmy
modelirovaniya razvitiya slozhnykh situatsiy [Methods and algorithms for modeling the development
of complex situations]. Taganrog: Izd-vo TRTU, 2003, 157 p.
17. Stanisław Duer. Diagnostic system with an artificial neural network in diagnostics of an analogue
technical object, Neural Computing and Applications. February 2010, Vol. 19, Issue 1, pp. 55-60.
18. Klevtsov Sergei I. Identification of the state of technical objects based on analyzing a limited set of
parameters, 2016 International Siberian Conference on Control and Communications (SIBCON):
Proceedings. National Research University Higher School of Economics. Russia, Moscow, May 12-14,
2016. Available at: http://ieeexplore.ieee.org/document/7491752/.
19. Novoselov O.N. Identifikatsiya i analiz dinamicheskikh sistem: monografiya [Identification and analysis
of dynamic systems: monograph]. 3rd ed. Moscow: GOU VPO MGUL, 2010, 424 p.
20. Gufel'd I.L., Gavrilov V.A., Korol'kov A.V., Novoselov O.N. Endogennaya aktivnost' Zemli i
dekompressionnaya model' seysmicheskogo shuma [Endogenous activity of the Earth and decompression
model of seismic noise], Doklady RAN [Reports of the Russian Academy of Sciences], 2008,
Vol. 423, No. 6, pp. 811-814.
21. Orlov V.N. Rukovodstvo po elektrokardiografii [Handbook of Electrocardiography]. Moscow:
Meditsina, 1984, 526 p. DOI: 10.1109/BMEiCon.2013.6687679.
22. Kannakorn Intharakham, Kesorn Suwanprasert. Complexity of Autonomic control during
Cerebrovascular Reactivity, Proceedings of the 6th Biomedical Engineering International Conference
(BMEiCON2013), October 2013.
23. Carmen González , Erik W. Jensen, Pedro L. Gambús, Montserrat Vallverdú. Poincaré plot analysis of
cerebral blood flow signals: Feature extraction and classification methods for apnea detection.
Published PLoS ONE: December 7, 2018, pp. 43-52. Available at: https://doi.org/10.1371/
journal.pone.0208642.
24. Jan Monieta. Selection of Diagnostic Symptoms and Injection Subsystems of Marine Reciprocating
Internal Combustion Engines, Appl. Sci., 2019, 9 (8), 1540. Available at: https://doi.org/10.3390/
app9081540.
25. Klevtsov S.I. Opredelenie kharaktera izmeneniy parametra na osnove analiza dinamiki formy
sovokupnosti ego znacheniy v real'nom vremeni [Determining the nature of parameter changes based
on the analysis of the dynamics of the shape of a set of its values in real time], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences]. – 2020. – № 3. – S. 46-55.
26. Klevtsov S.I. Opredelenie momenta skachkoobraznogo izmeneniya bystroperemennoy fizicheskoy
velichiny v real'nom vremeni s ispol'zovaniem diagramm Puankare [Determination of the moment of a
sudden change in a rapidly varying physical quantity in real time using Poincare diagrams], Izvestiya
YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 5, pp. 108-113.
Published
2024-10-08
Section
SECTION II. DATA ANALYSIS AND MODELING