UNAUTHORIZED ACCESS TO QUANTUM KEY DISTRIBUTION SYSTEM

  • А.P. Pljonkin Southern Federal University
Keywords: Synchronization pulse, key distribution, quantum communications, search algorithm, countermeasures, attacks on the quantum channel

Abstract

The paper examines the latest research and trends in safeguarding data transmission through stateof-
the-art cryptographic techniques. It details the encryption and decryption process using the one-time
pad method, also known as the Vernam cipher, renowned for its unparalleled security. The work showcases
common challenges addressed by quantum cryptography, which encompasses concepts like outcome
unpredictability, quantum entanglement, and the Heisenberg uncertainty principle. The paper discusses
the use of symmetric algorithms for data encryption and sets forth standards for encryption keys that ensure
the absolute confidentiality of data exchange. It provides a concise history of quantum communications
and cryptography development, highlighting the critical need for ongoing research in this domain.
A pivotal aspect of cryptographic security, the distribution of encryption keys to legitimate users, is underscored.
Quantum cryptography presents a method for generating and sharing keys derived from quantum
mechanical principles, integral to quantum key distribution (QKD) systems. Contemporary QKD systems
undergo extensive scrutiny, including their susceptibility to various attack types, with most research aimed
at identifying potential weaknesses in quantum protocols, often due to technical flaws in QKD system
components. The study addresses a technique for unauthorized access to QKD systems during detector
calibration. Furthermore, the paper explores a strategy for illicitly infiltrating the operations of a quantum
key distribution system in calibration mode and suggests a defensive approach. Field research findings
are presented, revealing that QKD systems are prone to vulnerabilities not only during quantum protocol
execution but also throughout other crucial operational phases. The identified attack method enables
the unauthorized acquisition of data from a quantum communication channel and the manipulation of
system operations. A design for auto-compensating optical communication systems is proposed to protect
the calibration process against unauthorized breaches. The impact of sync pulses, reduced to singlephoton
levels, on accurately detecting timing intervals with an optical signal is demonstrated. The article
concludes with experimental results that exhibit variances between theoretical expectations and the actual
performance of individual components within a quantum communication system.

References

1. Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography, Reviews of Modern Physics, 2002,
Vol. 74, No. 1, pp. 145-195.
2. Bennett C.H., Brassard G., & Ekert A.K. Quantum Cryptography, Scientific American, 1992, 267 (4),
pp. 50-57. Available at: http://www.jstor.org/stable/24939253.
3. Kulik S. Kvantovaya kriptografiya [Quantum cryptography], Fotonika [Photonics], 2010, No. 2,
pp. 36-41.
4. Shannon C.E. Communication theory of secrecy systems, in The Bell System Technical Journal, Oct.
1949, Vol. 28, No. 4, pp. 656-715. DOI: 10.1002/j.1538-7305.1949.tb00928.x.
5. Vernam G.S. Cipher printing telegraph systems: For secret wire and radio telegraphic communications,
Journal of the AIEE, 1926, 45 (2), pp. 109-115.
6. Deng F.G., & Long G.L. Secure direct communication with a quantum one-time pad, Physical Review
A, 2004, 69 (5), 052319.
7. Heisenberg W. The physical principles of the quantum theory. Courier Corporation, 1949.
8. Zhao Y., Fung C.H.F., Qi B., Chen C., & Lo H.K. Quantum hacking: Experimental demonstration of
time-shift attack against practical quantum-key-distribution systems, Physical Review A, 2008, 78 (4),
042333.
9. Makarov V., & Hjelme D.R. Faked states attack on quantum cryptosystems, Journal of Modern Optics,
2005, 52 (5), pp. 691-705.
10. Huang J.Z., Weedbrook C., Yin Z.Q., Wang S., Li H.W., Chen W., ... & Han Z.F. Quantum hacking of
a continuous-variable quantum-key-distribution system using a wavelength attack, Physical Review A,
2013, 87 (6), 062329.
11. Plenkin A.P. Bezopasnost' predvaritel'nogo etapa protsessa sinkhronizatsii sistemy kvantovogo
raspredeleniya klyuchey. Informatsionnye tekhnologii [Security of the preliminary stage of the synchronization
process of a quantum key distribution system. Information technologies],
Radioelektronika. Telekommunikatsii [Radioelectronics. Telecommunications], 2015, No. 5-2,
pp. 173-178.
12. Kulik S.P., Molotkov S.N., Makkaveev A.P. Kombinirovannyy fazovo-vremennoy metod kodirovaniya
v kvantovoy kriptografii [Combined phase-time coding method in quantum cryptography] Pis'ma v
Zhurnal eksperimental'noy i teoreticheskoy fiziki [Letters to the Journal of Experimental and Theoretical
Physics], 2007, Vol. 85, No. 5-6, pp. 354-359.
13. Pljonkin A., Rumyantsev K., Singh P.K. Synchronization in quantum key distribution systems, Cryptography,
2017, 1, 18. DOI: 10.3390/cryptography1030018.
14. Kurochkin V.L., Kurochkin Yu.V., Zverev A.V., Ryabtsev I.I., Neizvestnyy I.G. Eksperimental'nye
issledovaniya v oblasti kvantovoy kriptografii [Experimental research in the field of quantum cryptography],
Fotonika [Photonics], 2012, No. 5, pp. 54-66.
15. 15. Rumyantsev K.E., Plenkin A.P. Sinkhronizatsiya sistemy kvantovogo raspredeleniya klyucha pri
ispol'zovanii fotonnykh impul'sov dlya povysheniya zashchishchennosti [Synchronization of a quantum
key distribution system using photon pulses to increase security], Izvestiya YuFU. Tekhnicheskie
nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 8, pp. 81-96.
16. Futuristic Trends in Network and Communication Technologies Third International Conference,
FTNCT 2020, Taganrog, 14–16 октября 2020 года. Taganrog: Springer, 2021, 533 p. – (Communications
in Computer and Information Science; 2; Third International Conference, FTNCT 2020). ISBN
978-981-16-1483-5.
17. Pljonkin A., Petrov D., Sabantina L., Dakhkilgova K. Nonclassical attack on a quantum
keydistribution system, Entropy, 2021, Vol. 23, No. 5. DOI: 10.3390/e23050509.
18. Pljonkin A., Rumyantsev K. Quantum-cryptographic network, Proceedings of 2016 IEEE East-West
Design and Test Symposium, EWDTS 2016, Yerevan, October 14–17, 2016. Yerevan: Institute of
Electrical and Electronics Engineers Inc., 2017, pp. 7807623. DOI: 10.1109/EWDTS.2016.7807623.
19. Shurupov A.P., Kulik S.P. Kvantovoe raspredelenie klyucha na bifotonakh-kukvartakh s
proverochnymi sostoyaniyami [Quantum key distribution on biphotons-cuquarts with test states],
Pis'ma v Zhurnal eksperimental'noy i teoreticheskoy fiziki [Letters to the Journal of Experimental and
Theoretical Physics], 2008, Vol. 88, No. 9-10, pp. 729-733.
20. Fin'ko V.N., Kiselev V.V., Dzhogan V.K. [i dr.]. Kontseptual'nye ponyatiya deyatel'nosti po zashchite
informatsii [Conceptual concepts of information security activities], Doklady Tomskogo
gosudarstvennogo universiteta sistem upravleniya i radioelektroniki [Reports of the Tomsk State University
of Control Systems and Radioelectronics], 2008, No. 2-1 (18), pp. 144-146.
21. Alshaibi A., Al-Ani M., Al-Azzawi A. [et al.]. The Comparison of Cybersecurity Datasets, Data, 2022,
Vol. 7, No. 2. DOI: 10.3390/data7020022.
Published
2024-08-12
Section
SECTION II. INFORMATION PROCESSING ALGORITHMS