IMPLEMENTATION OF AN EFFICIENT SEPARABLE VECTOR DIGITAL FILTER ON FPGA

  • К.О. Sever Southern Federal University
  • К.N. Alekseev Southern Federal University
  • I.I. Turulin Southern Federal University
Keywords: Image processing, two-dimensional digital filters, high pass filter, Sobel filter, FPGA, sharpness

Abstract

In modern video surveillance systems, in which the use of computer vision technology is widespread,
the most important information in the image is data on the contours of objects and the highlighting of small
details. The systems are subject to stringent requirements, such as: high speed of processing information
from a large number of cameras simultaneously, operation in conditions of poor lighting of the object and
under the influence of external noise (electromagnetic fields, short interference from high-voltage transmission
lines). Therefore, improving image processing methods using parallel computing devices and building a
multi-threaded system is an urgent task. In this work, a 3x3 anisotropic high-pass filter is designed and simulated
for image processing on an FPGA. An algorithm for its construction in the form of a separable vector
representation is described. A detailed description is given of the development of an effective separable twodimensional
digital filter for sharpening and highlighting the boundaries of objects in RGB images. The filter
is based on the synthesis of the proposed 3x3 anisotropic high-pass filter and the Sobel gradient filter.
The corresponding block diagram of the filter has been designed. Based on the results of processing the distorted
image, we can conclude that the developed filter has the property of more uniform detailing and high lighting of objects in the image and is less susceptible to Gaussian noise compared to the Sobel gradient filter
and the Laplace high-pass filter. A filter pipeline circuit has been developed on an FPGA for processing one
plane of an RGB image. Due to the use of separable filters, the proposed implementation is almost 2 times
more optimal in terms of the number of addition/subtraction operations performed than the direct implementation
of a 3x3 Sobel gradient filter and a 3x3 anisotropic high-pass filter.

References

1. Krasnyashchikh A.V. Obrabotka opticheskikh izobrazheniy [Optical image processing]. Saint Petersburg:
NIU ITMO, 2012, 129 p.
2. Kudryavtsev N.G., Frolov I.N. Praktika primeneniya komp'yuternogo zreniya i elementov mashinnogo
obucheniya v uchebnykh proektakh: ucheb. posobie [The practice of using computer vision and machine
learning elements in educational projects: a tutorial]. Gorno-Altaysk : BITS GAGU, 2022, 180 p.
3. Bradski G., Kaehler A. Learning OpenCV: Computer Vision with the OpenCV Library.
O'ReillyMedia, 2008, 556 р.
4. Dzyuba V.G., Dzyuba A.V. Algoritm raspoznavaniya preduprezhdayushchikh dorozhnykh znakov
[Algorithm for recognizing warning road signs], Elektronika i svyaz' [Electronics and Communications],
2009, No. 6, pp. 13-17.
5. Alekseev S.A., Volkhonskiy V.V., Sukhanov A.V. Televizionnye sistemy nablyudeniya. Osnovy
proektirovaniya [Television surveillance systems. Basics of design]. Saint Petersburg: Universitet
ITMO, 2015, 126 p.
6. Dom'yanovski V. Bibliya videonablyudeniya. Tsifrovye i setevye tekhnologii [The CCTV Bible. Digital
and network technologies]. 2nd ed. Moscow: Ay-Es-Es-Press, 2006, 480 p.
7. Fisenko V.T., Fisenko T.Yu. Komp'yuternaya obrabotka i raspoznavanie izobrazheniy: ucheb. posobie
[Computer processing and image recognition: textbook]. Saint Petersburg SPbGU ITMO, 2008, 192 p.
8. Volkhonskiy V.V. Televizionnye sistemy nablyudeniya [Television surveillance systems]. 2nd ed. Saint
Petersburg: Ekopolis i kul'tura, 2005, 168 p.
9. Kistrin A.V., Kostrov B.V., Nikiforov M.B., Ustyukov D.I. Proektirovanie tsifrovykh ustroystv:
uchebnik [Design of digital devices: textbook]. Moscow: Kurs: INFRA-M, 2017, 352 p.
10. Chaithra.N.M., Reddy K.V.R. Implementation of Canny Edge Detection Algorithm on FPGA and displaying
Image through VGA Interface, International Journal of Engineering and Advanced Technology,
2013, Vol. 2, Issue-6, pp. 243-247.
11. Escobar F.A., Chang X., Valderrama C. Suitability Analysis of FPGAs for Heterogeneous Platforms
in HPC, IEEE Transactions on Parallel and Distributed Systems, 2016, Vol. 27, No. 2, pp. 600-612.
12. Fisenko V.T., Fisenko T.Yu. Komp'yuternaya obrabotka i raspoznavanie izobrazheniy: ucheb. posobie
[Computer processing and image recognition: textbook]. Saint Petersburg: SPbGU ITMO, 2008, 192 p.
13. Starovoytov V.V., Golub Yu.I. Tsifrovye izobrazheniya: ot polucheniya do obrabotki [Digital images:
from acquisition to processing]. Minsk: OIPI NAN Belarusi, 2014, 202 p.
14. Fisenko V.T., Fisenko T.Yu. Komp'yuternaya obrabotka i raspoznavanie izobrazheniy [Computer
processing and image recognition]. Saint Petersburg: SPbGU ITMO, 2008, 192 p.
15. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazheniy [Digital image processing]. Moscow:
Tekhnosfera, 2012, 1104 p.
16. Martin Králik, Libor Ladányi. Canny edge detector algorithm optimization using 2d spatial separable
convolution, Acta Electrotechnica et Informatica, 2021, Vol. 21, No. 4, pp. 36-43.
17. Priorov A.L., Apal'kov I.V., Khryashchev V.V. Tsifrovaya obrabotka izobrazheniy: ucheb. posobie
[Digital image processing: tutorial]. Yaroslavl': YarGU, 2007, 235 p.
18. Yane B. Tsifrovaya obrabotka izobrazheniy [Digital image processing]. Moscow: Tekhnosfera, 2007, 584 p.
19. Gruzman I.S., Kirichuk V.S. i dr. Tsifrovaya obrabotka izobrazheniy v informatsionnykh sistemakh:
ucheb. posobie [Digital image processing in information systems: a tutorial]. Novosibirsk: Izd-vo
NGTU, 2002, 352 p.
20. Shapiro L., Stokman Dzh. Komp'yuternoe zrenie [Computer vision]. Moscow: BINOM. Laboratoriya
znaniy, 2006, 752 p.
21. Selyankin V.V., Skorokhod S.V. Analiz i obrabotka izobrazheniy v zadachakh komp'yuternogo zreniya:
ucheb. posobie [Analysis and processing of images in computer vision tasks: a tutorial]. Taganrog:
Izd-vo YuFU, 2015, 82 p.
22. Mart'yanova A.V. Ispol'zovanie izotropnykh fil'trov v obrabotke izobrazheniy [Using isotropic filters
in image processing], Informatsiya: peredacha, obrabotka, vospriyatie [Information: transmission,
processing, perception]. Ekaterinburg: UrFU, 2016, pp. 34-41.
23. Shlezinger M.I. Matematicheskie sredstva obrabotki izobrazheniy [Mathematical tools for image processing].
Kiev: Naukova dumka, 1989, 200 p.
24. Donald G. Bailey. Design for Embedded Image Processing on FPGAs. John Wiley & Sons (Asia) Pte
Ltd, 2011, 482 p.
25. Zhang Y.Y., Wang P.S.P. A modified parallel thinning algorithm, Intern. Conf. on Pattern Recognition,
Rome, Italy, 14–17 Nov. 1988. Rome, 1988, pp. 1023-1025.
26. Arkhitektura UltraScale i tekhnicheskoe opisanie produkta: obzor [UltraScale Architecture and Product
Datasheet: Overview]. Available at: https://docs.amd.com/v/u/en-US/ds890-ultrascale-overview
(accessed 15 May 2024).
Published
2024-08-12
Section
SECTION II. INFORMATION PROCESSING ALGORITHMS