FORMATION OF A RADAR SCENE FOR MODELING RADARS WITH A SYNTHESIZED APERTURE

  • Владимир ЮФУ
Keywords: Radar image, parallel computing, aperture synthesis, surface-distributed underlying surface

Abstract

This article discusses the creation of a radar scene for the subsequent modeling of a synthetic aperture radar. The complexity of the development of radar requires the creation of models of radar systems for testing signal processing algorithms. The main difficulty in simulating the reflection of a signal from the underlying surface is the high computational complexity associated with the large number of facets that are exposed to the radar. Reducing the cost of computation can be achieved by optimizing data processing, excluding non-illuminated facets from computation, while transferring computations to graphics processors. The purpose of the article is to create a method for generating variants of the radar scene, to create a method for generating target object simulators, to perform signal processing modeling, taking into account only illuminated facets in the carrier movement process and the implementation of radar image generation. In this work, optical satellite images of the terrain were used to create a radar scene, the brightness of each pixel of which is converted to the radar cross section (RCS) values. When calculating the reflected signal, the antenna pattern was taken into account, which made it possible to reduce the calculations time up to 26% (depending on the scene configuration). The developed model uses the MATLAB environment. This article shows a comparison of performance without exception and with the exclusion of illuminated facets for different radar scenes. Using the model with this radar scene allows you to assess the impact of system parameters to the output radar image.

References

1. Безродный В. И. и др. Построение трехмерных моделей подстилающей поверхности для задач дистанционного зондирования земли //Информационные технологии и нанотехнологии (ИТНТ-2017). – 2017. – P. 829-832.
2. Жиганов С. Н. Модель отраженного от подстилающей поверхности сигнала //Проектирование и технология электронных средств. – 2011. – №. 1. – P. 52-54.
3. Yu M., Zhang X., Liu Z. Acceleration of fast factorized back projection algorithm for bistatic SAR //2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS. – IEEE, 2013. – P. 2493-2496.
4. Карасев Д. В. и др. Математическое моделирование процесса формирования радиолокационного изображения для полно-поляризационных радаров с синтезированной апертурой //Радиолокация, навигация, связь. – 2017. – P. 874-880.
5. Андреев В. Г., Юкин С. А. Формирование радиолокационного изображения подстилающей поверхности по цифровой топографической карте //Вестник Рязанского государственного радиотехнического университета. – 2007. – №. 21. – P. 25-30.
6. Zherdev D. A. et al. HPC implementation of radar images modelling method using CUDA //Journal of Physics: Conference Series. – IOP Publishing, 2018. – Т. 1096. – №. 1. – P. 012083.
7. Zhu M. et al. Fast Digital Simulation of SAR Echoes Based on GPU //Proceedings of the 7th International Conference on Information Communication and Management. – ACM, 2017. – P. 74-77.
8. Bingnan W., Fan Z., Maosheng X. SAR raw signal simulation based on GPU parallel computation //Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009. – IEEE, 2009. – Т. 4. – P. IV-617-IV-620.
9. Zhang F. et al. Hybrid general-purpose computation on GPU (GPGPU) and computer graphics synthetic aperture radar simulation for complex scenes //International Journal of Physical Sciences. – 2012. – Т. 7. – №. 8. – P. 1224-1234.
10. Баланов М. Ю., Коровин Г. В., Пак А. А. Высокопроизводительный алгоритм моделирования радиолокационной системы дистанционного зондирования земли на графическом процессоре с параллельной архитектурой //Известия высших учебных заведений. Приборостроение. – 2018. – Т. 61. – №. 7.
11. Xie H. et al. Efficient raw signal generation based on equivalent scatterer and subaperture processing for one-stationary bistatic SAR including motion errors //IEEE Transactions on Geoscience and Remote Sensing. – 2016. – Т. 54. – №. 6. – P. 3360-3377.
12. Kraja F. et al. Performance evaluation of SAR image reconstruction on CPUs and GPUs //2012 IEEE Aerospace Conference. – IEEE, 2012. – P. 1-16.
13. Yao X. et al. Comparison of distributed GPU computing frameworks for SAR raw data simulation //2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). – IEEE, 2017. – P. 5225-5228.
14. Антипов В.Н., Горяинов В.Т., Кулин А.Н. и др. Радиолокационные станции с цифровым синтезированием апертуры антенны/Под ред. В.Т. Горяинова. М.: Радио и связь. 1988. 304 с.
15. Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли: Учебное пособие для вузов/Под ред. Г.С. Кондратенкова. М.: Радиотехника, 2005. 368 с.
16. Franceschetti G., Migliaccio M., Riccio D. On ocean SAR raw signal simulation //IEEE Transactions on Geoscience and Remote Sensing. – 1998. – Т. 36. – №. 1. – P. 84-100.
17. Zhang P., Liu C. Y., Guo C. J. Design of simulation platform for SAR echo-wave signal based on MATLAB //Computer simulation. – 2008. – Т. 27. – №. 1. – P. 338-341.
18. Zhang S., Chen J. A echo simulation algorithm for natural scene //2008 International Conference on Radar. – IEEE, 2008. – P. 464-468.
19. Cimmino S. et al. Efficient spotlight SAR raw signal simulation of extended scenes //IEEE Transactions on Geoscience and Remote Sensing. – 2003. – Т. 41. – №. 10. – P. 2329-2337.
20. Balz T., Stilla U. Hybrid GPU-based single-and double-bounce SAR simulation //IEEE Transactions on Geoscience and Remote Sensing. – 2009. – Т. 47. – №. 10. – P. 3519-3529.
Published
2019-07-13
Section
SECTION II. MODELING OF PROCESSES AND SYSTEMS