CIRCUIT FEATURES OF HIGH-TEMPERATURE ANALOG MICROCIRCUITS ON GAN AND GAAS TRANSISTORS

  • А.V. Bugakova Don State Technical University
  • N.N. Prokopenko Don State Technical University
  • D.V. Kleimenkin Don State Technical University
  • О.V. Dvornikov “Minsk Scientific Research Instrument-Making Institute” JSC
  • V.А. Tchekhovski Institute of Nuclear Problems, Belarusian State University
Keywords: GaAs, GaN, HEMT, depletion mode type FET, enhancement mode type FET, high-temperature analog microcircuits

Abstract

High-temperature integrated circuits, which remain operational at temperatures above 150°C, are
required in many areas of industry: aerospace, aviation and automotive instrumentation, the petrochemical
industry, electric power, and military electronics. Currently, foreign enterprises are mass-producing
several high-temperature analog and analog-to-digital microcircuits based on silicon CMOS SOI structures
– ADS1278-HT, ADS1282-HT, ADS8320-HT, INA129-HT, INA333-HT, OPA2333-HT, etc. Hightemperature
silicon operational amplifiers and ADCs have also been developed in the Russian Federation.
However, the maximum operating temperature of such products does not exceed 200°C due to the limitations
of silicon technologies. For this reason, wide-bandgap semiconductors such as silicon carbide (SiC),
gallium nitride (GaN) and gallium arsenide (GaAs) are most often considered as semiconductors intended
for high-temperature microcircuits, which provide a number of characteristics necessary for hightemperature
applications: wide bandgap, high carrier saturation velocity and low concentration of intrinsic
charge carriers. An overview of the problems of developing high-temperature analog microcircuits
based on GaN and GaAs transistors is presented. The features of the current-voltage characteristics of
GaN and GaAs field-effect transistors operating in depletion and enhancement modes, electrical circuits
of typical analog devices (charge-sensitive and operational amplifiers, comparators, current followers)
and logical gates are considered. It is concluded that it is advisable to carry out the circuit synthesis of
GaAs analog microcircuits using field-effect transistors with an n-type channel operating in depletion
mode and p-n-p heterostructure bipolar transistors. Examples of such schemes are given. The relevance of
the above research is related to the problems of import substitution of microcircuits based on widebandgap
semiconductors (GaN, GaAs), providing a wide range of operating temperatures (over +150°C).

References

1. Korotkov A.S., Morozov D.V., Pilipko M.M., Enuchenko M.S. 12-razryadnyy del'ta-sigma ATSP dlya
monitoringa sostoyaniya vysokotemperaturnykh ob"ektov [12-bit delta-sigma ADC for monitoring the
state of high-temperature objects], Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh
sistem (MES) [Problems of development of advanced micro- and nanoelectronic systems stem (MES)],
2020, Issue 1, pp. 95-99.
2. Balashov E.V., Ivanov N.V., Akhmetov D.B., Korotkov A.S. Vysokotemperaturnyy instrumental'nyy
usilitel' [High-temperature instrumental amplifier], Nanoindustriya [Nanoindustry], 2020, No. S96-1,
pp. 160-163.
3. Hassan A., Amer M., Savaria Y., Sawan M. Towards GaN500-based High Temperature ICs: Characterization
and Modeling up to 600°C, 2020 18th International New Circuits and Systems Conference
(NEWCAS). IEEE, 2020, pp. 275-278.
4. Hassan A., Ali M., Trigui A., Savaria Y., Sawan M. A GaN-Based Wireless Monitoring System for
High-Temperature Applications, Sensors, 2019, Vol. 19 (8), pp. 1785.
5. Hassan A., Noël J-P., Savaria Y., Sawan M. Circuit Techniques in GaN Technology for High-
Temperature Environments, Electronics, 2022, Vol. 11 (1), pp. 42.
6. Fresina M. Trends in GaAs HBTs for wireless and RF, Bipolar/BiCMOS Circuits and Technology
Meeting J. IEEE, 2011, pp. 150-153.
7. Zampardi P.J., Sun M., Cismaru C., Li J. Prospects for a BiCFET III-V HBT Process, Compound
Semiconductor Integrated Circuit Symposium (CSICS), 2012, pp. 1-3.
8. Jena M.R., Panda A.K., Dash G.N. A Comparative Analysis InP/InGaAs δ Doped based NPN and
PNP HBT, International Journal of Engineering Research & Technology (IJERT), 2019, Vol. 8, Issue
09, pp. 819-823.
9. Lovshenko I.Yu., Kratovich P.S., Stempitskiy V.R., Dvornikov O.V., Kunts A.V., Pavlyuchik A.A.
Geteroperekhodnyy bipolyarnyy tranzistor so strukturoy pnp-tipa v arsenid-gallievoy tekhnologii
HBT-HEMT [Heterojunction bipolar transistor with a pnp-type structure in arsenide gallium technology
HBT-HEMT], Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem – 2022: Sb.
trudov [Problems of development of promising micro- and nanoelectronic systems - 2022. Collection
of papers], edited by. ed. Academician of the RAS A.L. Stempkovskogo. Moscow: IPPM RAN, 2022,
Issue IV, pp. 149-154.
10. Dvornikov O.V., Pavlyuchik A.A., Prokopenko N.N., Chekhovskiy V.A., Kunts A.V., Chumakov V.E.
Arsenid-gallievyy analogovyy bazovyy kristall [Gallium Arsenide analog base crystal] Problemy
razrabotki perpektivnykh mikro- i nanoelektronnykh sistem – 2021: Sb. trudov [Problems of development
of promising micro- and nanoelectronic systems - 2021. Collection of works], edited by. ed.
Academician of the RAS A.L. Stempkovskogo. Moscow: IPPM RAN, 2021, pp. 47-54.
11. Cai Y., Cheng Z., Yang Z., Tang C., Lau K., Chen K. High-Temperature Operation of AlGaN/GaN
HEMTs Direct-Coupled FET Logic (DCFL) Integrated Circuits, Electron Device Letters J. IEEE,
2007, Vol. 28, No. 5, pp. 328-331.
12. Dvornikov O.V., Pavlyuchik A.A., Prokopenko N.N., Chekhovskiy V.A., Kunts A.V., Chumakov V.E.
Unifitsirovannye skhemotekhnicheskie resheniya analogovykh arsenid-gallievykh mikroskhem [Unified
circuit solutions for analog gallium arsenide microcircuits], Izvestiya vuzov. Elektronika [News of
universities. Electronics], 2022, Vol. 27, No. 4, pp. 475-488.
13. Nomoto K., Hasegawa K., Satoh M., Nakamura T. Reliability of High-Temperature Operation for
GaN-Based OPAMP, MRS Online Proceedings Library (OPL), 2009, pp. 1195-B08-02.
14. Dvornikov O.V., Chekhovskiy V.A, Dyatlov V.L., Prokopenko N.N. Sozdanie nizkotempera-turnykh
analogovykh IS dlya obrabotki impul'snykh signalov datchikov. Ch. 3 [Creation of low-temperature
analog ICs for processing pulse signals from sensors. Part 3], Sovremennaya elektronika [Modern
electronics], 2015, No. 6, pp. 34-39.
15. Dvornikov O.V., Prokopenko N.N., Chumakov V.E., Tchekhovsky V.A. General-Purpose Simulation
Technique for Сharge-Sensitive Amplifiers Based on Wide-Band-Gap (GaAs, GaN) D-FETs, Proceedings
of 16th International Conference of Actual Problems of Electronic Instrument Engineering
(APEIE). IEEE, 2023.
16. Takai N., Fujii N. GaAs MESFET multi-output current mirrors and their application to high frequency
filters, International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science
and Technology (Cat. No. 98EX196). IEEE, 1998, Vol. 2, pp. 307-310.
17. Ehteshamuddin M., Salem J.M., Ha D.S. A high temperature variable gain amplifier based on GaN
HEMT devices for downhole communications, 2017 IEEE International Symposium on Circuits and
Systems (ISCAS), 2017, pp. 1-4.
18. Fujiwara M., Nagata H., Hibi Y., Matsuo H., Sasaki M. Cryogenic low noise amplifier with GaAs JFETs,
AIP Conference Proceedings J. American Institute of Physics, 2009, Vol. 1185, No. 1, pp. 267-270.
19. Lan D. Ning Y., Wang J., Jiang H. High performance two-stage bootstrapped GaAs comparator with
gain enhancement, 16th Annual Wireless and Microwave Technology Conference (WAMICON). IEEE,
2015, pp. 1-4.
20. Pennisi S., Pulvirenti F., Samperi K. Frequency Compensation Scheme for a Full GaN OpAmp driving 1-
nF load, 2022 International Symposium on Circuits and Systems (ISCAS). IEEE, 2022, pp. 2042-2046.
Published
2024-05-28
Section
SECTION II. ELECTRONICS, NANOTECHNOLOGY AND INSTRUMENTATION