CHARACTERISTICS OF A TWO-RESONATOR COMB-TYPE MICROSTRIP ELEMENT WITH AN OPTIMAL LENGTH OF THE COUPLING REGION BETWEEN THE RESONATORS

  • А.V. Labyntsev Southern Federal University
  • N.Е. Ponomarev Southern Federal University
  • D.V. Kharlanov Southern Federal University
  • А.N. Sarzhanov Krasnodar Higher Military School
Keywords: Microstrip comb filter, longitudinal displacement of resonators, parasitic bandwidth, barrier strip

Abstract

When designing microwave devices, an important role is played by the introduction of additional
structural elements or parameters into the filter topology, the appropriate choice of which allows you to optimize
the characteristics of the device according to a given criterion. The paper considers a method for expanding
the barrier band of a comb-type microstrip filter by introducing a longitudinal displacement between
the resonators. It is shown that a certain choice of the length of the coupling region between the resonators
makes it possible to minimize or reduce to zero the coupling between them in the vicinity of the tripled average
frequency of the main bandwidth, and thereby significantly suppress the parasitic attenuation dip in this
frequency range. In the process of designing the filter, a synthesis method was used based on the transition
from the filter to the corresponding 2n-pole, where n is the number of filter resonators. This approach allows
us to consider the filter as a set of individual resonators connected to each other, and to introduce the concept
of potential bandwidth, which can be easily determined by the characteristics of the 2n-pole and positioned
in the desired frequency axis interval by an easily formalized algorithm for selecting the geometric
dimensions of the device. The electrical characteristics of the 2n-pole used to synthesize the device within the
baseband and at the stage of optimizing the device parameters in the vicinity of the tripled value of the baseband
frequencies are the intrinsic conductivities of the resonators and the conductivities of the connection
between them. The aim of the work is to study the effect of the length of the coupling region between the resonators of a two-resonator microstrip comb filter on its electrical characteristics. It is shown that the
choice of the optimal value of the length of the coupling region between the resonators makes it possible to
expand the barrier band of the filter at a level of minus 30-35 dB by more than two times due to the suppression
of the parasitic bandwidth formed in the vicinity of the tripled average frequency of the main
bandwidth. This positive effect, which consists in expanding the filter barrier band, is confirmed by the
results of designing a comb filter on two offset resonators in the HFSS program.

References

1. Aristarkhov G.M. Kirillov I.N. Kompaktnye mikropoloskovye fil'try s povyshennoy chastotnoy
izbiratel'nost'yu na osnove poluvolnovykh rezonatorov [Compact microstrip filters with increased frequency
selectivity based on half-wave resonators.], Sistemy sinkhronizatsii, formirovaniya i obrabotki
signalov [Systems of synchronization, signal generation and processing], 2020, Vol. 11, No. 2,
pp. 40-44. DOI: 10.1109/SYNCHROINFO49631.2020.9166122.
2. Aristarkhov G.M., Kirillov I.N., Korchagin A.I., Kuvshinov V.V. Kompaktnye vysokoizbiratel'nye
mikropoloskovye fil'try na svernutykh sonapravlennykh shpilechnykh rezonatorakh [Compact highly
selective microstrip filters on folded co-directional stud resonators], Radiotekhnika [Radio engineering],
2021, Vol. 85, No. 4, pp. 126-137. DOI: 10.18127/j00338486-202104-14.
3. Aristarkhov G.M., Arinin O.V., Kirillov I.N. Mnogopolosnye polosno-propuskayushchie mikropoloskovye
fil'try na dvukh sonapravlennykh shpilechnykh rezonatorakh [Multiband band-pass microstrip filters on two
co-directional stud resonators], Sistemy sinkhronizatsii, formirovaniya i obrabotki signalov [Systems of synchronization,
signal generation and processing], 2023, Vol. 14, No. 1, pp. 4-9.
4. Belyaev B.A., Serzhantov A.M., Khodenkov S.A. Patent № 2775868 C1. Ros. Federatsiya, 2022.
Vysokoselektivnyy mikropoloskovyy polosno-propuskayushchiy fil'tr [Patent RF, No. 2775868 C1,
2022. Highly selective microstrip band-pass filter].
5. Belyaev B.A., Serzhantov A.M., Khodenkov S.A. Patent № 2797166 C1. Ros. Federatsiya, 2023.
Mikropoloskovyy polosno-propuskayushchiy fil'tr [Patent RF, No. 2797166 C1, 2023. Microstrip
band-pass filter].
6. Serzhantov A.M. Rezonansnye poloskovye struktury i chastotno-selektivnye ustroystva na ikh osnove s
uluchshennymi kharakteristikami: diss. … d-ra tekhn. nauk [Resonant strip structures and frequencyselective
devices based on them with improved characteristics: dr. of eng. sc. diss.]. Krasnoyarsk. 2015.
7. Labyntsev A.V. Passivnye selektivnye ustroystva SVCH na baze mnogomodovykh mikropoloskovykh
liniy: diss. … kand. tekhn. nauk [Passive selective microwave devices based on multimode microstrip
lines: cand. of eng. sc. diss.]. Taganrog: TRTI, 1987, 201 p.
8. Agafonov V.M., Labyntsev V.A., Labyntsev. A.V. Mikropoloskovyy grebenchatyy fil'tr. A.S. SSSR
№1450018. BI №1, 1989 [Microstrip comb filter. A.S. USSR No. 1450018. No. 1, 1989].
9. Agafonov V.M., Labyntsev. A.V. Mikropoloskovyy fil'tr. A.S. SSSR № 1376140. BI № 7, 1988
[Microstrip Filter. A.S. USSR No. 1376140. No. 7, 1988].
10. Labyntsev A.V.; Poveshenko L.I.; Kharlanov D.V. Microstrip Filter with Extended Barrier, 2019 Radiation and
Scattering of Electromagnetic Waves (RSEMW), 2019, pp. 176-179. – https://ieeexplore.ieee.org/document/
8792722 doi: 10.1109/RSEMW.2019.8792722.
11. Patent US5066933. Band-pass filter. Publication Date 19.11.1991.
12. Patent US20020057143. High frequency filter, filter device, and electronic apparatus incorporating the
same. Publication Date 16.05.2002.
13. Xiao F., Norgren M. Compact third-order microstrip bandpass filter using hybrid resonators, Progress
in Electromagnetics Research C, 2011, Vol. 19, pp. 93-106.
14. Agafonov V.M., Labyntsev V.A., Labyntsev A.V. Mikropoloskovyy grebenchatyy fil'tr. A.S. SSSR №1262602.
Opubl. V BI, 1986, № 37 [Microstrip comb filter. USSR No. 1262602. Publ. In BI, 1986, No. 37].
15. Labyntsev A.V., Ignat'ev V.V., Vasil'ev V.V., Mikhaylovskiy Vit.A., Kharlanov D.V. Proektirovanie
fil'tra iz shpilechnykh rezonatorov s metallizirovannymi otverstiyami s pomoshch'yu programmnoy
sistemy [Software system for designing a filter made of hairpin resonators with metallized holes],
Programmnye produkty i sistemy [Software products and systems], 2023, Vol. 36, No. 4, pp. 668-677.
DOI: 10.15827/0236-235X.142.668-677. Available at: http://www.swsys.ru/archive/2023-4.pdf.
16. Obukhovets Victor A., Labyntsev Alexey V., Kharlanov Dmitry V., Ponomarev Nikolay E., Sarzhanov
Alexander N. Example of Filter Synthesis on Two Anti-directional Stud Resonators with One Metalized
Hole in Each Resonator, 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW),
2023, pp. 160-163. DOI: 10.1109/rsemw 58451.2023.10202019.
17. Labyntsev A.V., Poveshenko L.I., Kharlanov D.V. Two-Stage Design of Microstrip Filters from Arbitrary
Configuration Resonators, 2019 Radiation and Scattering of Electromagnetic Waves (RSEMW),
2019, pp. 172-175. Available at: https://ieeexplore.ieee.org/document/8792770. DOI: 10.1109/
RSEMW.2019.8792770.
18. Mattey D.L., Yang L., Dzhons E.M.T. Fil'try SVCh, soglasuyushchie tsepi i tsepi svyazi [Microwave
filters, impedance-matching networks, and coupling structures]: transl. from engl., ed. by
L.V. Alekseeva i F.V. Kushnira. Moscow: Svyaz', 1971, 440 p.
19. Agafonov V.M. Polinomial'nye fil'try SVCh [Polynomial microwave filters], Radiotekhnika i
elektronika [Radio Engineering and Electronics], 1970, Vol. 15, No. 10, pp. 2191-2193.
20. Bankov S.E., Kurushin A.A. Raschet antenn i SVCh struktur s pomoshch'yu HFSS Ansoft [Calculation of
antennas and microwave structures using HFSS Ansoft]. Moscow: ZAO «NPP „Rodnik“», 2009, 256 p.
Published
2024-05-28
Section
SECTION II. ELECTRONICS, NANOTECHNOLOGY AND INSTRUMENTATION