HYBRID ELECTRODYNAMIC MODEL OF RADAR SIGNAL SCATTERING BY TWO-LAYER VOLUME

  • Валентин Бахчевников ЮФУ ИРТСУ
Keywords: simulation model, subsurface sensing, radio wave scattering, multilayered aim, rough boundary

Abstract

The noncontact monitoring of soils from airborne is actual now. The using of simulation instead of field-tests is justified due to heavy expenses . Many methods are known for accurate or approximate calculations of electromagnetic fields (EMF), that scattered by multilayered structures. However, there has not been developed a generic approach up to now, for fast engineering calculation of radar signal parameters, reflected by layered structures with irregularities and rough boundaries in far field. In this paper a flexible simulation model is produced. The model is capable of impulse response computation for scattering from multilayered surface with irregularities. The object is not concentrated and incident wave is not plane in conditions of small distances. Therefore principles, acceptable for far field problem, can not be used fot near field.

The developed model based on boundaries facet representation of space distributed multilayered object. The facet is presented by impedance triangle with known scattering parameters. Resulting EMF is calculated by summarizing of partial fields scattering on triangle facet taking in account phases and polarization of incident electromagnetic wave. The model is based on high-frequency method, and it provides high speed of computations for large area aims having any layers number and the boundaries roughness.

The paper deals with results, obtained by model: normalized RSC for one-layer structure with rough surface for different average width of layer; verification by normalized RSC for two-layer structure; attenuation influence on RSC for two-layer structure; RSC for two-layer structure with rough surfaces.

References

1. Jayawickreme D. H., Jobbágy E. G., Jackson R. B. Geophysical subsurface imaging for ecological applications //New Phytologist. – 2014. – Т. 201. – №. 4. – С. 1170-1175.
2. Lobach V. T. Radar measurements of layered medium parameters //Izvestiya Vysshikh Uchebnykh Zavedenij. Radioelektronika 2003 45 (3), pp. 71-77.
3. Saleh B. (ed.). Introduction to subsurface imaging. – Cambridge University Press, 2011.
4. Albert A., Mobley C. D. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters //Optics Express. – 2003. – Т. 11. – №. 22. – С. 2873-2890.
5. Knott E. F., Schaeffer J. F., Tuley M. T. Radar Cross Section, 274. – 2004.
6. Morgenthaler A. W., Rappaport C. M. Scattering from lossy dielectric objects buried beneath randomly rough ground: validating the semi-analytic mode matching algorithm with 2-D FDFD //IEEE transactions on geoscience and remote sensing. – 2001. – Т. 39. – №. 11. – С. 2421-2428.
7. Gibson W. C. The method of moments in electromagnetics. – Chapman and Hall/CRC, 2007.
8. Jin J. M. The finite element method in electromagnetics. – John Wiley & Sons, 2015.
9. Çakir m. K. Radar cross section analysis by shooting and bouncing rays method. – 2015.
10. Meng H. T. Acceleration of asymptotic computational electromagnetics physical optics—shooting and bouncing ray (PO-SBR) method using CUDA. – 2011.
11. Лобач В.Т., Потипак М.В. Модельные исследования радиолокационного отражения сложных сигналов взволнованной морской поверхностью. //Материалы 13 Международной Крымской конференции «СВЧ Техника и телекоммуникационные технологии» КрыМиКо'2003 Севастополь. 2003. С. 760-762.
12. Lobach V.T., Potipak M.V. Modeling of modulated signals back-scattering from quasiperiodic surface. //Proceedings of SPIE Aero Sense. 2003. vol. 5097. pp. 141-148.
13. Lobach V.T., Potipak M.V. Change in waveform envelope radar signal back-scattered from sea surface. //Proceedings of SPIE Aero Sense. 2002. vol. 4744. pp. 192-200.
14. Glassner A. S. (ed.). An introduction to ray tracing. – Elsevier, 1989.
15. Y. Berquin, A. Herique, W. Kofman, and E. Heggy, “Computing lowfrequency radar surface echoes for planetary radar using Huygens–Fresnel’s principle,” Radio Sci., vol. 50, no. 10, pp. 1097–1109, 2015.
16. Gerekos C. et al. A Coherent Multilayer Simulator of Radargrams Acquired by Radar Sounder Instruments //IEEE Transactions on Geoscience and Remote Sensing. – 2018. – №. 99. – С. 1-17.
17. Boissonnat J. D., Dyer R., Ghosh A. Delaunay triangulation of manifolds //Foundations of Computational Mathematics. – 2018. – Т. 18. – №. 2. – С. 399-431.
18. Лонге-Хиггинс М.С. Статистический анализ случайно движущейся поверхности. //Ветровые волны. Под ред. Ю.М. Крылова. М.: Иностранная литература, 1962. 218 с.
19. Зубкович С.Г. Статистические характеристики радиосигналов, отраженных от земной поверхности. М.: Сов. Радио, 1968. 224 с.
20. Отчет по НИР «Модернизация действующего макета подповерхностного радиолокатора и проведение натурных экспериментов по дистанционному зондированию грунтовых вод», х/д №11230, 2004г. руководитель Лобач В.Т.
Published
2019-07-13
Section
SECTION II. MODELING OF PROCESSES AND SYSTEMS