KNOWLEDGE ONTOLOGY MODEL FOR INTELLIGENT TEXT PROCESSING AND ANALYSIS SYSTEMS

  • D.Y. Kravchenko Southern Federal University
Keywords: Knowledge ontology, text processing and analysis, semantics, information support, emergency situations, decision support, information structuring

Abstract

The article is devoted to solving the scientific problem of creating a top-level description of a
knowledge ontology model for intelligent systems for processing and analyzing texts in natural language,
built on the basis of an original component architecture that provides the necessary level of detail in the
specifications of the analyzed text information. The relevance of this task is due to the need to develop the
theoretical foundations for constructing information models of semantic dependencies within texts in natural
language. The author gives definitions to the main terms of the subject area under study. A formalized
definition of the problem being solved is presented. The problem of the “information explosion,” which
was caused by the exponential growth in the volume of digital information, has led to a situation where up
to 95% of the information flow contains unstructured data. In such conditions, the task of creating effective
intelligent systems for searching and acquiring knowledge, including intelligent systems for processing
and analyzing texts in natural language, becomes extremely urgent. The scientific direction for
solving this particular problem is Text Mining (TM) – the excavation of knowledge in text information.
As an example of the applied task of using acquired knowledge, this study examines the significant problem
of information support for the processes of preventing and/or eliminating the consequences of emergency
situations. In this task, the initial data are streams of text messages (news information, reports on
the technical condition of man-made objects, information about natural phenomena, etc.) arriving at decision-
making centers, and the output is formed by predictive assessments and/or specific instructions regarding
the assessment situations and actions taken by certain specialists. One of the reasons hindering
the development of intelligent text processing and analysis systems for solving problems of searching,
acquiring and using knowledge is the insufficiently high level of models and algorithms efficiency that
provide a comprehensive solution to the above-described problems of artificial intelligence, taking into
account the peculiarities of semantics and context.

References

1. Barsegyan A., Kupriyanoa M., Stepanenko V., Kholod I. Tekhnologii analiza dannykh: Data Mining,
Text Mining, Visual Mining, OLAP [Data analysis technologies: Data Mining, Text Mining, Visual
Mining, OLAP]. 2nd ed. St. Petersburg: BKhV-Peterburg, 2008.
2. Kravchenko D.Yu., Kravchenko Yu.A., Kureychik V.V., Markov V.V. Matematicheskoe opisanie
protsessa podderzhki prinyatiya resheniy pri otsenke semanticheskoy blizosti znaniy v
konkretizirovannoy modeli ontologii [Mathematical description of the decision support process when
assessing the semantic proximity of knowledge in a specified ontology model], Sovremennye
komp'yuternye tekhnologii: Mater. II nauchno-metodicheskoy konferentsii NPR [Modern computer
technologies: Proceedings of the II scientific and methodological conference of scientific and scientific
research]. Taganrog: Izd-vo YuFU, 2021, pp. 25-28.
3. Khoroshevskiy, V.F. Semanticheskie tekhnologii: ozhidaniya i trendy [Semantic technologies: expectations
and trends], Otkrytye semanticheskie tekhnologii proektirovaniya intellektual'nykh system [Open
semantic technologies for designing intelligent systems], 2012, No. 2, pp. 143-158.
4. Kravchenko Yu.A. Kontseptual'nye osnovy refleksivno-adaptivnogo podkhoda k postroeniyu
intellektual'nykh informatsionnykh sistem [Conceptual foundations of a reflexive-adaptive approach to
the construction of intelligent information systems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2011, No. 7 (120), pp. 167-171.
5. Korogodin V.I., Korogodina V.L. Informatsiya kak osnova zhizni [Information as the basis of life].
Dubna: Izdatel'skiy tsentr «Feniks», 2000, 208 s.
6. Kravchenko Yu.A. Informatsionnye modeli priobreteniya znaniy i metody ikh klassifikatsii,
strukturirovaniya, integratsii i semanticheskogo poiska: dis. … d-ra tekhn. nauk [Information models
of knowledge acquisition and methods of their classification, structuring, integration and semantic
search: dr. of eng. sc. diss.]: 05.13.17. Taganrog: 2021, 314 p.
7. Kravchenko D.Yu., Gerasimenko E.M., Kravchenko Yu.A., Kuliev E.V. Podderzhka prinyatiya resheniy
po preduprezhdeniyu i likvidatsii posledstviy chrezvychaynykh situatsiy na osnove nechetkogo
metoda strukturirovaniya informatsii [Support for decision-making to prevent and eliminate the consequences
of emergency situations based on the fuzzy method of information structuring], Izvestiya
YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2023, No. 2 (232), pp. 201-212.
8. Agarwal M. An Overview of Natural Language Processing, International Journal for Research in
Applied Science and Engineering Technology, 2019, No. 7, pp. 2811-2813.
9. Naumov V.N. Analiz dannykh i mashinnoe obuchenie. Metody i instrumental'nye sredstva [Data analysis
and machine learning. Methods and tools]. St. Petersburg: IPTS SZIU RANKHiGS, 2020, 260 p.
10. Pimeshkov V.K., Shishaev M.G. Metody izvlecheniya znaniy iz estestvenno-yazykovykh tekstov
[Methods for extracting knowledge from natural language texts], Tr. Kol'skogo nauchnogo tsentra
RAN. Seriya: Tekhnicheskie nauki [Proceedings of the Kola Scientific Center of the Russian Academy
of Sciences. Series: Technical Sciences], 2022, Vol. 13, No. 2, pp. 31-45.
11. Mao X., Huang S., Li R., Shen L. Automatic keywords extraction based on co-occurrence and semantic
relationships between words, IEEE Access, 2020, Vol. 8, pp. 117528-117538.
12. Kravchenko Yury, Mansour Ali, Mohammad Juman, Silega Nemury, Kravchenko Daniil. Harnessing
key phrases in constructing a concept-based semantic representation of text using clustering techniques,
Lecture Notes in Computer Science, Vol. 14335, pp. 190-201.
13. Kravchenko D.Y., Kravchenko Y.A., Kursitys I.O. Architecture and Method of Integrating Information
and Knowledge on the Basis of the Ontological Structure, Advances in Intelligent Systems and Computing,
2018, Vol. 658, pp. 93-103.
14. Kravchenko D.Y., Kravchenko Yu.A., Kursitys I.O. Ontological Approach for Designing a Multi-agent
Behavior Model in the Internet Environment, Journal of Physics: Conference Series, 2019, Vol. 1333,
No. paper 032043.
15. Efremova O.A., Pavlov S.V. Ontologicheskaya model' integratsii raznorodnykh po strukture i tematike
prostranstvennykh baz dannykh v edinuyu regional'nuyu bazu dannykh [Ontological model for integrating
spatial databases of heterogeneous structure and subject matter into a single regional database],
Ontologiya proektirovaniya [Design Ontology], 2017, Vol. 7, No. 3 (25), pp. 323-333.
16. Kozierkiewicz-Hetmanska A., Pietranik M. The Knowledge Increase Estimation Framework for Ontology
Integration on the Concept Level, Journal of Intelligent and Fuzzy Systems, 2017, Vol. 32,
pp. 1161-1172.
17. Kravchenko Yu.A., Branchenko D.S. Issledovanie preimushchestv ontologicheskogo podkhoda v
semanticheskom analize dannykh [Study of the advantages of the ontological approach in semantic data
analysis], Informatsionnye tekhnologii, sistemnyy analiz i upravlenie [Information technologies, system
analysis and management], 2016, Vol. 1, pp. 146-151.
18. Brandt S., Kontchakov R., Ryzhikov V. et al. Ontology-Based Data Access with a Horn Fragment of
Metric Temporal Logic, 31st Conference on Artificial Intelligence, 2017, Vol. 31, pp. 1-17.
19. Eiter T., Parreira J.X., Schneider P. Spatial Ontology Mediated Query Answering over Mobility
Streams, The Semantic Web - 14th International Conference, 2017, Part I, Vol. 10249, pp. 219-237.
20. Kravchenko D.Yu., Kravchenko Yu.A., Mansur A.M., Mokhammad Zh.Kh. Metod avtomaticheskogo
izvlecheniya klyuchevykh slov [Method for automatic extraction of keywords], Tr. mezhdunarodnogo
nauchno-tekhnicheskogo kongressa «Intellektual'nye sistemy i informatsionnye tekhnologii – 2022»
(«IS & IT-2022», «IS&IT’22») [Proceedings of the international scientific and technical congress “Intelligent
systems and information technologies - 2022” (“IS & IT-2022”, “IS&IT’22”)]. Vol. 1. Scientific
publication. Taganrog: Izd-vo Stupina S.A., 2022, pp. 90-97.
21. Kravchenko D.Yu., Kravchenko Yu.A., Mansur A.M., Mokhammad Zh.Kh. Modifitsirovannyy metod
postroeniya semanticheskogo predstavleniya teksta na osnove metodov klasterizatsii i vzveshivaniya
terminov [A modified method for constructing a semantic representation of text based on clustering
and term weighting methods], Tr. XII mezhdunarodnoy nauchno-tekhnicheskoy konferentsii
«Tekhnologii razrabotki informatsionnykh sistem (T IS -2022)» [Proceedings of the XII International
Scientific and Technical Conference “Information Systems Development Technologies (TRIS-
2022)”]. Taganrog: 2022, pp. 94-100.
Published
2024-05-28
Section
SECTION I. CONTROL SYSTEMS AND MODELING