ANALYSIS OF THE RELATIVE PLACEMENT OF THE SENSITIVE MASSES OF ACCELEROMETERS IN ALGORITHMS FOR STRAPDOWN INERTIAL NAVIGATION SYSTEMS

  • А.Е. Morozov Public joint stock company «Perm Scientific-Industrial Instrument Making Company»
  • N.D. Bogdanov Public joint stock company «Perm Scientific-Industrial Instrument Making Company»
Keywords: Compensation algorithm, size-effect, inertial navigation, methodological errors INS, accelerometer, tangential and centripetal acceleration

Abstract

The present study introduces a method for algorithmic compensation of the displacement of
the centers of sensitive elements of accelerometers within a high-precision inertial navigation
system. Previous considerations omitted this compensation due to the potential for minimizing its
impact through structural features—specifically, the close proximity of accelerometers to each
other. With the upgrading of components in the inertial sensors, the influence of size-effect errors
could become significant compared to gyroscopes and accelerometers errors. This study aims to
analyze the impact of these errors on solving navigation tasks under the precision conditions of
modern inertial sensors. The compensation scheme is elaborated in detail: compensation to an arbitrary center of the inertial measurement unit is separately discussed, considering the spreading
effect of the accelerometer triad, and to the center of rotation of the vehicle, accounting for the
installation location on the operational object. Additionally, designs of accelerometer placements
on platforms of high-precision and compact inertial navigation system sensor blocks are analyzed.
By conducting a series of rotations on an inclinable turntable, the spreading of accelerometers is
calculated using the least squares method concerning the intersection point of the rotation axes of
the stand used. An estimation of the discrepancy of the calculated spreading coefficients of sensitive
elements from their nominal values is obtained. Through calibration rotations, the reduction
of all parasitic phenomena in the accelerometer signal due to centripetal and tangential accelerations
is achieved. The influence of parasitic accelerometer signals during the roll of the product on
coordinate computation is analytically derived, revealing the dependency of the studied error on
the product's operational time under constant rolling conditions. Real tests on the inclinable turntable
were conducted for verification, and the obtained results of compensation effectiveness are
presented. The compensation results from flight tests on a two-seat vertical takeoff and landing
helicopter are provided. The flight test calculations were conducted through physical modeling
based on recorded data with the synchronization of the employed sensors considered. Compensation
in the mode of aligning the accelerometer triad to an arbitrary point and aligning accelerometers
to the center of the vehicle's rotation is separately discussed

References

1. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya BINS [Basics of building SINS]. GNTS
RF «Kontsern TSNII Elektropribor», 2009, 280 p.
2. Belousov M.A., Zobachev D.Yu. Verifikatsiya modeli volokonno-opticheskogo giroskopa s
razlichnoy glubinoy modulyatsii [Verification of a fiber-optic gyroscope model with different
modulation depths], Navigatsiya, navedenie i upravlenie letatel'nymi apparatami: Tezisy dokladov
[Navigation, guidance and control of aircraft: Abstracts of reports]. Moscow, 2019, pp. 94-96.
3. Trukhova N.A., Belousov M.A., Remennikova M.V. Issledovanie vliyaniya vykhodnykh
kharakteristik superlyuministsentnogo volokonnogo istochnika na tochnostnye parametry
volokonno-opticheskogo giroskopa [Study of the influence of the output characteristics of a
superluminescent fiber source on the accuracy parameters of a fiber-optic gyroscope], XXVIII
Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Sovremennye tekhnologii v
zadachakh upravleniya, avtomatiki i obrabotki informatsii»: Cb. trudov [XXVIII International
scientific and technical conference «Modern technologies in control, automation and information
processing tasks»: Collection of works]. Tambov, 2019, pp. 70.
4. Tarasenko A.B. Sozdanie i issledovanie vysokotochnoy navigatsionnoy sistemy na osnove
lazernykh giroskopov s vibropodstavkoy: diss. … kand. tekhn. nauk [Creation and research of
a high-precision navigation system based on laser gyroscopes with a vibration support: cand.
of eng. sc. diss. Moscow, 2021, 94 p.
5. Belousov M.A., Krivosheev A.I. Compensation of Excess Intensity Noise of a Light Source in a
Fiber-Optic Gyroscope, 30th Saint Petersburg ICINS. Saint Petersburg, May 2023, pp. 245-246.
6. Minkin A.M. Tekhnologiya izgotovleniya chuvstvitel'nogo elementa kvartsevogo
akselerometra metodom ob"emnoy mikroobrabotki [Technology for manufacturing the sensitive
element of a quartz accelerometer using volumetric micromachining], Prikladnaya
fotonika [Applied Photonics], 2019, Vol. 6, No. 3-4, pp. 147-159.
7. Jiang Q., Tang J. and Han S. Analysis and compensation for size effect error of laser gyro
Strapdown Inertial Navigation System, Infrared and Laser Engineering, 2015, 44 (4),
pp. 1110-1114.
8. Morozov A.E., Belousov M.A., Zobachev D.Yu. Methodology for determining the delays in
sensor measurements in navigation systems, 30th Saint Petersburg International Conference
on Integrated Navigation Systems. Saint Petersburg, 2023, pp. 280-281.
9. Slobodan J. Size effect of the inertial measurement unit and inside IMU accelerometers on
aircraft position error, Vojnitehnicki glasnik. Beograd, 2003, pp. 171-181.
10. Ren L., Du J. and Wang M. Error analysis and compensation of size effect in INS with IMU
rotation, Acta Aeronautica et Astronautica Sinica, 2013, 34 (6), pp. 1424-1435.
11. Xie B., Qin Y., Wan Y. and Shi. W. Analysis and compensation for size effect of strapdown
inertial navigation system, Journal of Chinese Inertial Technology, 2012, 20 (4), pp. 414-420.
12. Dranitsyna E.V. Kalibrovka izmeritel'nogo modulya pretsizionnoy BINS na volokonnoopticheskikh
giroskopakh: diss. … kand. tekhn. nauk [Calibration of the precision SINS measuring
module on fiber-optic gyroscopes: cand. of eng. sc. diss.]. Saint Petersburg., 2016, 89 p.
13. Hung J.C., Hunter J.S., Stripling W.W., White H.V. Size-effect on navigation using a
strapdown IMU, Guidance and Control Directorate Technology Laboratory. Redstone Arsenal,
Alabama, 1979, pp. 29.
14. You J., Qin Y., Yang P. and Yan G. Modeling and calibration of the accelerometer size effect
error of the SINS, Journal of Astronautics, 2012, 33 (3), pp. 311-317.
15. Kozlov A.V., Shaymardanov I.Kh. Kalibrovka vnutrennego razneseniya chuvstvitel'nykh mass
akselerometrov BINS-RT [Calibration of internal separation of sensitive masses of BINS-RT
accelerometers], XXXI konferentsiya pamyati vydayushchegosya konstruktora
giroskopicheskikh priborov N.N. Ostryakova [XXXI conference in memory of the outstanding
designer of gyroscopic devices N.N. Ostryakova]. Saint Petersburg, 2018, pp. 25-34.
16. Zhou G., Xu W. and Ye P. Lever-Arm Calibration Method of Fiber Strapdown Inertial Navigation
System Accelerometer, Piezoelectrics & Acoustooptics, 2015, 37 (6), pp. 945-949.
17. Gao Р., Li К., Wang L., Liu Z. A self-calibration method for tri–axis rotational inertial navigation
system, IEEE Transactions on Industrial Electronics. United States, 2018, Vol. 65, Issue 2,
pp. 1655-1664.
18. Vyaz'min V.S., Golovan A.A., Govorov A.D. Nachal'naya i konechnaya vystavki
beskardannogo aerogravimetra s opredeleniem smeshcheniy nulevykh signalov
akselerometrov [Initial and final alignments of a gimballess aerogravimeter with determination
of the offsets of accelerometer zero signals], Giroskopiya i navigatsiya [Gyroscopy and navigation],
2023, Vol. 31, No. 1 (120), pp. 76-88.
19. Chang Z., Zhang Z., Zhou Z., Xu Z., Guo Q. Initial Alignment for Rotating SINS Based on
Online Compensation of Size Effect, Acta Armamentarii, 2020, 41 (10), pp. 2016-2022.
20. Sharon E. A Least Squares Approach to Size Effect in Inertial Navigation, IEEE Proceedings
of Position Location and Navigation Symposium. Monterey, United States, 2014, pp. 721-732.
21. Poletti L., Sendra D. Sanchis, Siryani R. A direct approach for high-quality MEMS based
IMU/INS production, Inertial Sensors and Systems, 2020, 19 p.
22. Salychev O.S., Verified approaches to inertial navigation,. – Moscow: The Bauman Moscow
State Technical University, Russia, 2017, 368 p.
23. Tarasenko A.B., Fomichev A.A., Larionov P.V., Kolchev A.B., Filatov P.A., Milikov E.A.
Razrabotka, nastroyka i ispytaniya novoy malogabaritnoy inertsial'no-sputnikovoy
navigatsionnoy sistemy [Development, configuration and testing of a new small-sized inertial
satellite navigation system], Sb. trudov XXVIII Sankt-peterburgskoy mezhdunarodnoy
konferentsii po integrirovannym navigatsionnym sistemam [collection of works XXVIII Saint
Petersburg ICINS]. Saint Petersburg, 2023, pp. 151-157.
Published
2024-04-16
Section
SECTION III. COMMUNICATION, NAVIGATION AND GUIDANCE