THE INFORMATION AND NAVIGATION FIELD CONSTRUCTING SYSTEM FOR UGV AND UAV IN AN URBAN ENVIRONMENT

  • Y.S. Barichev FSUE "VNIIA"
  • О. P. Goydin FSUE "VNIIA"
  • S.А. Sobolnikov FSUE "VNIIA"
  • V.P. Noskov Bauman Moscow State Technical University
Keywords: UAV, UGV, mobile robot, group control, multi-agent, SLAM

Abstract

The recent increasing demand of heterogeneous groups of robots (UAV and UGV) with increased
autonomy when conducting special operations in industrial and urban environments is
substantiated. The urgent task of forming, based on data from UAVs on-board computer vision
systems, an information and navigation field that ensures autonomous targeted safe UAVs and
UGVs movement in shielded areas of an urban environment is formulated. The formation of a
generalized geometric model of the external environment can be achieved by specifying a set of
target positions in terms of the working area, which the UAV must visit in a given sequence and
return to the starting point. In the process of visiting achievable target points, a generalized geometric
model of the external environment is formed and the current coordinates of the UAV are
determined. Methods and algorithms for constructing various models of the external environment
and solving navigation tasks are described, which ensure planning and executing of targeted safe
movement trajectories in real time according to on-board data, which is the basis of autonomous
control, including the heterogeneous robots’ groups control. Autonomous control systems for the
movement of UAVs and UGVs are based on methods and algorithms for identifying semantic objects
(supporting surface planes and vertical walls), which abound in urban environments, and
extreme navigation using 3D images (point clouds), obtained from lidar or depth cameras.
The results of experiments on the information and navigation fields creation and solving navigation
tasks based on on-board computer vision data in a real industrial-urban environment are
presented, confirming the effectiveness and practical value of the proposed methods and algorithms.
The use of a single information and navigation field, on the one hand, significantly increases
the autonomy of a group of robots due to the ability to independently plan actions when
performing complex operations, and on the other hand, increases the situational awareness of
robot operators by providing information about the working space in a convenient form

References

1. Lakota N.A., Noskov V.P., Rubtsov I.V., Lundgren Ya.-O., Moor F. Opyt ispol'zovaniya
elementov iskusstvennogo intellekta v sisteme upravleniya tsekhovogo transportnogo robota
[The experience of using artificial intelligence elements in the control system of a shop
transport robot], Mekhatronika [Mechatronics], 2000, No. 4, pp. 44-47.
2. Zagoruyko S.N., Kaz'min V.N., Noskov V.P. Navigatsiya BPLA i 3D-rekonstruktsiya vneshney
sredy po dannym bortovoy STZ [UAV navigation and 3D reconstruction of the external
environment based on on-board VS data], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics,
automation, control], 2014, No. 8, pp. 62-68.
3. Noskov V.P., Rubtsov I.V., Romanov A.Yu. Formirovanie ob"edinennoy modeli vneshney sredy
na osnove informatsii videokamery i dal'nomera [Formation of a combined model of the external
environment based on information from a video camera and a rangefinder], Mekhatronika,
avtomatizatsiya, upravlenie [Mechatronics, automation, control], 2007, No. 8, pp. 2-5.
4. Yang J., Wen C.-K., Yang X., Xu J., Du T., and Jin S. Multi-domain cooperative SLAM: The
enabler for integrated sensing and communications, IEEE Wireless Commun., Feb. 2023,
Vol. 30, No. 1, pp. 40-49.
5. Saha A., Dhara B.C., Umer S.; AlZubi A.A.;,Alanazi J.M., Yurii K. CORB2I-SLAM: An Adaptive
Collaborative Visual-Inertial SLAM for Multiple Robots, Electronics, 2022, 11, 2814.
6. Sun Y. and Huang F. and Wen W. and Hsu L.-T. and Liu X. Multi-Robot Cooperative Lidar Slam
for Efficient Mapping in Urban Scenes, The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 2023, Vol. XLVIII-1/W1-2023, pp. 473-478.
7. Noskov V.P., Noskov A.V. Navigatsiya mobil'nykh robotov po dal'nometricheskim
izobrazheniyam [Navigation of mobile robots by rangefinder images], Mekhatronika,
avtomatizatsiya, upravlenie [Mechatronics, automation, control], 2005, No. 12, pp. 16-21.
8. Kaz'min V.N., Noskov V.P. Vydelenie geometricheskikh i semanticheskikh ob"ektov v
dal'nometricheskikh izobrazheniyakh dlya navigatsii robotov i rekonstruktsii vneshney sredy
[Selection of geometric and semantic objects in rangefinder images for robot navigation and
reconstruction of the external environment], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2015, No. 10 (171), pp. 71-83.
9. Noskov V.P., Kiselev I.O. Vydelenie ploskikh ob"ektov v lineyno strukturirovannykh 3Dizobrazheniyakh
[Extracting planar objects in linearly structured 3D images], Robototekhnika i
tekhnicheskaya kibernetika [Robotics and technical cybernetics], 2018, No. 2 (19), pp. 31-38.
10. Lee C.Y. An Algorithm for Path Connections and Its Applications, IRE Trans., 1961, v EC-10, No. 3.
11. Kalyaev A.V., Noskov V.P., Chernukhin Yu.V. Algoritm upravlyayushchey struktury
transportnogo robota [The transport robot control structure algorithm], Izvestiya AN SSSR.
Tekhnicheskaya kibernetika [Proceedings of the USSR Academy of Sciences. Technical cybernetics],
1980, No. 4, pp. 64-72.
12. Kalyaev A.V., Noskov V.P., Chernukhin Yu.V. Odnorodnaya upravlyayushchaya struktura
adaptivnogo robota-manipulyatora [Homogeneous control structure of an adaptive robot manipulator],
Izvestiya AN SSSR. Tekhnicheskaya kibernetika [Proceedings of the USSR Academy
of Sciences. Technical cybernetics], 1981, No. 6, pp. 121-126.
13. Kalyaev A.V., Chernukhin Yu.V., Noskov V.P., Kalyaev I.A. Odnorodnye upravlyayushchie
struktury adaptivnykh robotov [Homogeneous control structures of adaptive robots]. Moscow:
Nauka, 1990, 147 p.
14. Tomás Lozano-Pérez, Michael A. Wesley. An algorithm for planning collision-free paths among
polyhedral obstacles, Communications of the ACM, 1979, Vol. 22, Issue 10, pp. 560-570.
15. Dijkstra E.W. A Note on two Problems in Connexion with Graphs, Numerische Mathematik,
1959, Vol. 1, Issue 1, pp. 269-271.
16. Gradetskiy V.G., Ermolov I.L., Knyaz'kov M.M., Lapin B.S., Semenov E.A., Sobol'nikov S.A.,
Sukhanov A.N. Sistema gruppovogo transportnogo upravleniya mobil'nymi nazemnymi
robotami na razlichnykh gruntakh [Transport group control system of unmanned ground vehicles
for various soils], Robototekhnika i tekhnicheskaya kibernetika [Robotics and Engineering
Cybernetics], 2020, 8, 1, pp. 61-71.
17. Gradetskiy V.G., Ermolov I.L., Knyaz'kov M.M., Semenov E.A., Sobol'nikov S.A., Sukhanov A.N.
O nauchnykh zadachakh vypolneniya transportnykh operatsiy gruppoy mobil'nykh robotov [Scientific
tasks of implementing transportation tasks by groups of UGVs], Robototekhnika i
tekhnicheskaya kibernetika [Robotics and Technical Cybernetics], 2016, 3, pp. 57-62.
18. Gradetsky Valery, Ermolov Ivan, Knyazkov Maxim, Semenov Eugeny, Sobolnikov Sergey and
Sukhanov Artem. Implementation of a Joint Transport Task by a Group of Robots. Smart Electromechanical
Systems, Studies in Systems, Decision and Control. Springer, pp. 203-214.
19. Gradetskiy V.G., Ermolov I.L., Knyaz'kov M.M., Sobol'nikov S.A. Postroenie podvizhnykh
kommunikatsionnykh setey na baze nazemnykh avtonomnykh mobil'nykh robotov [Design of moving
communication network on the base of ground autonomous mobile robots], Mekhatronika.
Avtomatizatsiya. Upravlenie [Mechatronics. Automation. Control], 2011, No. 11, pp. 27-32.
20. Ermolov I.L., Knyazkov M.M., Sobolnikov S.A., Sukhanov A.N., Usov V.M. Position Control of
Ugv Group for Covid (Virus Sars-Cov-2covid) Localization and Primary Treatment Within
Indoor Environment, Studies in Systems, Decision and Control, 2021, Vol. 352, pp. 113-125.
Published
2024-04-16
Section
SECTION III. COMMUNICATION, NAVIGATION AND GUIDANCE