MATHEMATICAL METHODS OF COMPLEX PROCESSING OF RTC NAVIGATION DATA

  • А. P. Zykov JSC «GosNIIP»
  • P.N. Mironov Moscow Aviation Institute
Keywords: Navigation systems, data fusion, Kalman filter, data processing, information space, system identification, real-time systems

Abstract

Nowadays, the navigation systems of robot-technical complexes (RTC) use heterogeneous sensors
of primary information, which can provide redundancy of navigation data. This allows to increase
the accuracy of calculation of motion parameters, as well as allows to determine them with greater
reliability in case of failure of one or more sensors. The paper gives a review and classification of lowlevel
mathematical methods of processing overridden state parameters of RTC navigation systems. It is
noted that the problem of combining is a subfield of the problem of system identification and therefore
has common approaches to the construction of the solution. In the vast majority of methods based on the
optimization approach, the quadratic error function is used as the optimality criterion. All mathematical
methods of combining (complex processing or fusion) any data are divided into low-, medium- and
high-level methods. In navigation systems, low-level methods such as recursive, nonrecursive, and covariance-
based methods are the most used. Non-recursive methods are rarely used directly. Recursive
ones are usually constructed using a Kalman filter scheme. Recursive ones, as a rule, are constructed
according to the Kalman filter scheme. Not all methods are robust to non-Gaussianity and correlation
dependence of the original data, which is often encountered in navigation systems with overdetermined
data. In addition, not all methods can be used to address the relevance of data from navigation instruments.
It is noted that the key for combining methods is the approach of fusion data in an information
space, understood as the inverse of covariance, since the vast majority of methods, including Bayesian
methods, are reducible to it. In this regard, covariance-based methods are of most interest. However, for solving the problem of data relevance in navigation, the existing methods are poorly suited to the problem
of data relevance because they require computationally intensive optimization problem solving at
each step, and navigation systems are real-time systems. Thus, there is a problem of developing new
approaches to solve this problem

References

1. Stepanov O.A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki
navigatsionnoy informatsii. Ch. 1. Vvedenie v teoriyu otsenivaniya [Fundamentals of estimation
theory with applications to navigation information processing problems. Part 1. Introduction
to assessment theory]. 3rd ed. St. Petersburg: GNTS RF AO «Kontsern «TsNII
«Elektropribor», 2017, 509 p.
2. Ljung L. Perspectives on system identification, Annual Reviews in Control, April, 2010,
Vol. 34, Issue 1, pp. 1-12.
3. L'yung L. Identifikatsiya sistem. Teoriya dlya pol'zovatelya [System identification. Theory for
the user]: trans. from engl., ed. by Ya.Z. Tsypkina. Moscow: Nauka, Fizmatlit, 1991, 432 p.
ISBN 5-02-014511-4.
4. Chernorutskiy I.G. Metody optimizatsii. Komp'yuternye tekhnologii [Optimization methods.
Computer technologies]. St. Petersburg: BKhV-Peterburg, 2011, 384 p.
5. Luo R.C., Chang C.C., Lai C.C. Multisensor fusion and integration: theories, applications, and
its perspectives, IEEE Sensors Journal, 2011, Vol. 11, No. 12, pp. 3122-3138.
6. Dmitriev S.P., Stepanov O.A. Nelineynye algoritmy kompleksnoy obrabotki izbytochnykh
izmereniy [Nonlinear algorithms for complex processing of redundant measurements],
Izvestiya akademii nauk. Teoriya i sistemy upravleniya [Proceedings of the Academy of Sciences.
Theory and control systems], 2000, No. 4, pp. 52-61.
7. Aravkin A., Burke J.V., Ljung L., Lozano A., Pillonetto G. Generalized Kalman smoothing:
Modeling and algorithms, Automatica, 2017, Vol. 86, pp. 63-86.
8. Bogdanov M.B., Prokhortsov A.V., Savel'ev V.V., Smirnov V.A., Solov'ev A.E. Obzor metodov
kompleksirovaniya v integrirovannykh navigatsionnykh sistemakh [Review of integration
methods in integrated navigation systems], Izvestiya TulGU. Tekhnicheskie nauki [News of
Tula State University. Technical science], 2020, Issue 5, pp. 118-126.
9. Dmitriev S.P., Stepanov O.A., Koshaev D.A. Issledovanie sposobov kompleksirovaniya
dannykh pri postroenii inertsial'no-sputnikovykh sistem [Study of methods for integrating data
when constructing inertial-satellite systems], Integrirovannye inertsial'no-sputnikovye sistemy
navigatsii: Sb. statey i dokladov [Integrated inertial-satellite navigation systems: Collection of
articles and reports]. St. Petersburg: GNTS RF TSNII «Elektropribor», 2001, pp 43-59.
10. Dmitriev S.P., Stepanov O.A. Neinvariantnye algoritmy obrabotki informatsii inertsial'nykh
navigatsionnykh sistem [Non-invariant algorithms for processing information of inertial navigation
systems], Integrirovannye inertsial'no-sputnikovye sistemy navigatsii: Sb. statey i
dokladov [Integrated inertial-satellite navigation systems: Collection of articles and reports].
St. Petersburg: GNTS RF TSNII «Elektropribor», 2001, pp. 67-82.
11. Salychev O.S. Applied inertial navigation: problems and solutions. Moscow, Russia, BMSTU
press, 2004, 302 p.
12. Julier S., Uhlmann J. A non-divergent estimation algorithm in the presence of unknown correlations,
Proc. Amer. Control Conf., 1997, Vol. 4, pp. 2369-2373.
13. Ng G.W., Yang R. Comparison of decentralized tracking algorithms, Proc. 6th Int. Conf. Inform.
Fusion, 2003, Vol. 1, pp. 107-113.
14. Gen K., Chulin N.A. Integrirovannaya navigatsionnaya sistema dlya bespilotnykh letatel'nykh
apparatov s vozmozhnost'yu obnaruzheniya i izolyatsii neispravnostey [Integrated navigation
system for unmanned aerial vehicles with the ability to detect and isolate faults], Nauka i
obrazovanie [Science and Education], 2016, No. 12, pp. 182-206. DOI:
10.7463/1216.0852517.
15. Gan Q., Harris C.J. Comparison of two measurement fusion methods for Kalman-filter-based
multisensor data fusion, IEEE Trans on Aerospace and Electionic Systems, Jan, 2001, Vol. 37,
No. 1, pp. 273-279.
16. Bochardt O., Calhoun R., Uhlmann J.K., Julier S.J. Generalized information representation and
compression using covariance union, Proc. 9th Int. Conf. Inform. Fusion, Jul 2006, pp. 1-7.
17. Mishin A.Yu., Frolova O.A., Isaev Yu.K., Egorov A.V. Kompleksnaya navigatsionnaya sistema
letatel'nogo apparata [Integrated navigation system of an aircraft], Tr. MAI [Proceedings of
MAI], 2010, Issue No. 38. Available at: https://trudymai.ru/published.php?ID=14161.
18. Fomichev A.V., Tan' L. Razrabotka algoritma bystroy kompensatsii pogreshnostey
kompleksirovannoy inertsial'no-sputnikovoy sistemy navigatsii malogabaritnykh bespilotnykh
letatel'nykh apparatov v usloviyakh slozhnoy sredy [Development of an algorithm for fast error
compensation of an integrated inertial-satellite navigation system for small unmanned aerial
vehicles in a complex environment], Nauka i obrazovanie [Science and Education], 2015,
No. 10, pp. 252-270. DOI: 10.7463/1015.0821641.
19. Bar-Shalom Y., Campo L. The effect of the common process noise on the two-sensor fused track covariance,
IEEE Trans on Aerospace and Electionic Systems, Nov. 1986. Vol. AES-22. pp. 803-805.
20. Chen H., Kirubarajan T., Bar-Shalom Y. Performance limits of track-to track fusion vs. centralized
estimation: theory and application, Fusion, Aug. 2001, Vol. 1, pp. TuB1-25–33.
21. Al' Bitar N., Gavrilov A.I. Integratsiya besplatformennoy inertsial'noy i sputnikovoy
navigatsionnykh sistem na osnove slabosvyazannoy skhemy kompleksirovaniya s
ispol'zovaniem rasshirennogo fil'tra Kalmana [Integration of strapdown inertial and satellite
navigation systems based on a loosely coupled integration scheme using an extended Kalman
filter], Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation],
2019, No. 4 (88). DOI: 10.18698/2308-6033-2019-4-1870.
22. Gning A., Abdallah F., Bonnifait P. A new estimation method for multisensor fusion by using
interval analysis and particle filtering, Proc. IEEE Int. Conf. Robot. Autom., Apr. 2007,
pp. 3844-3849.
23. Liu Y., Wang B., He W., Zhao J., Ding Z. Fundamental principles and applications of particle
filters, Proc. 6th World Congr. Intell. Control Autom., Jun. 2006, pp. 5327-5331.
24. Julier S., Uhlmann J., Durrant-Whyte H. A new method for the nonlinear transformation of
means and covariances in filters and estimators, IEEE Transactions on automatic control,
2000, Vol. 45, No. 3, pp. 477-482.
25. Arthur G.O., Mutambara A. Information based estimation for both linear and nonlinear systems,
Proceedings of the American Control Conference, Jun. 1999, pp. 1329-1333.
Published
2024-04-15
Section
SECTION II. CONTROL AND SIMULATION SYSTEMS