ASSESSMENT OF DESTRUCTION OF POLYMER ELECTRICAL INSULATING MATERIAL DUE TO PARTIAL DISCHARGES AND RADICALCHAIN FRACTURE MECHANISMS

  • N. К. Poluyanovich Southern Federal University
  • М.N. Dubyago Southern Federal University
Keywords: Reliability of cable systems, Reliability of cable systemsradical chain mechanism of destruction, partial discharges, diagnostics, residual resource

Abstract

The article is devoted to the development of a method of non-destructive testing of the insulating
material of cable systems. The destruction of a polymer material caused by a radical chain
mechanism of destruction is considered. The mechanism of destruction of polyethylene caused by
electron and ion bombardment under the action of partial discharges (PD) is given. The formation
of cross-links associated with the activation of double bonds during the transfer of electronic excitation
energy from a polyethylene chain is shown. When exposed to CR, the number of
transvinylene-type double bonds reaches saturation with an increase in the dose of absorbed energy.
The PD diagnostic system using a complex of characteristics of PD inclusions (SB, qCR, hB) by
the amount of heat generated (Q) and ignition voltage (UV) obtained by the developed software is
effective both for assessing the current state of insulation and for predicting its residual resource.
The detected CR sources indicate the presence of inclusions in the cable insulation. Within the
framework of the conducted research, a neural network (NS) model describing the architecture of
a cyber-physical system power cable lines (PCL) for predicting the resource of EM cable electrical
networks was built. The algorithm of the adaptive system operation, selection of parameters
and training of the NS with subsequent prediction of the PCL resource is synthesized, which makesit possible to increase the reliability of the PCL by reducing the time to create the optimal configuration
of the NS. The obtained NS model can be effectively used for the analysis of thermal fluctuation
processes occurring in the control object – PCL, and the prediction of the behavior of the
object. The method of diagnosis of IM CL in operating conditions is given. The analysis of the
obtained results showed that the measurement of the parameters of the PD allows us to assess the
impact of various factors on the electrical insulation of the CL and determine the degree of its
degradation. PD is a measure of the degree of electrical aging.

References

1. Dubyago M.N., Poluyanovich N.K. Sovershenstvovanie metodov diagnostiki i
prognozirovaniya elektroizolyatsionnykh materialov sistem energosnabzheniya: monografiya
[Improvement of methods of diagnostics and forecasting of electrical insulation materials of
power supply systems. Monograph]. Rostov-on-Don; Taganrog: Izd-vo YuFU, 2019, 192 p.
2. Kuchinskiy G.S. Chastichnye razryady v vysokovol'tnykh konstruktsiyakh [Partial discharges
in high-voltage structures]. Leningrad: Energiya, Leningrad, otd., 1979, 224 p.
3. Vdoviko V.P. Chastichnye razryady v diagnostirovanii vysokovol'tnogo oborudovaniya [Partial
discharges in the diagnosis of high-voltage equipment]. Novosibirsk: Nauka, 2007, 155 p.
4. Shablovskiy Ya.O. Preduprezhdenie pozharoopasnykh otkazov silovykh kabeley [Prevention of
fire-hazardous failures of power cables], Preduprezhdenie i likvidatsiya chrezvychaynykh
situatsiy: Mater. mezhdunarodnoy konferentsii molodykh uchenykh [Prevention and response
to emergency situations: Proceedings of the international conference of young scientists].
Minsk, 2013, pp. 169-172.
5. Ismagilov F.R. Matematicheskoe modelirovanie razvitiya chastichnykh razryadov v protsesse
stareniya dielektrika [Mathematical modeling of the development of partial discharges in the
aging process of the dielectric], Vestnik UGATU [Bulletin of UGATU], 2011, pp. 98-100.
6. Van Brant R. Fizika i khimiya chastichnykh razryadov i korony: poslednie dostizheniya i
budushchie posledstviya [Physics and chemistry of partial discharges and corona: recent achievements
and Future consequences], Uaytkhedovskie chteniya [Whitehead Readings], 1994.
7. Zolotarev V.M. Tangens ugla dielektricheskikh poter' mnogosloynykh sshitykh izolyatsionnykh
konstruktsiy [The tangent of the dielectric loss angle of multilayer cross-linked insulating structures],
Vestnik: NTU «KHPI» [Bulletin: NTU "KhPI"], 2011, No. 49, pp. 64-73.
8. Kopyryulin P.V. Sovershenstvovanie ekspluatatsionnykh svoystv kabel'nykh liniy s
polimernoy izolyatsiey: diss. … kand. tekhn. nauk [Improvement of operational properties of
cable lines with polymer insulation: cand. of eng. sc. diss]: 05.09.03. Sam. gos. tekhn. un-t.
Samara, 2013, 132 p.
9. Kopyryulin P.V. Zavisimosti tangensa del'ta bumazhno-maslyannoy izolyatsii,
ispol'zuyushchegosya pri izmerenii pod rabochim napryazheniem [Dependences of the delta
tangent of paper-oil insulation used for measuring under operating voltage], Izvestiya vuzov.
Elektromekhanika [Izvestiya Vuzov. Electromechanics], 2011, No. 3, pp. 96-99.
10. Il'chenko N.S., Kirilenko V.M.. Polimernye dielektriki [Polymer dielectrics]. Kiev: Tekhnika,
1977, 160 p.
11. Finkel' 3.E., Leshchenko S.S., Braginskiy R.P. Radiatsionnaya khimiya i kabel'naya tekhnika.
M.: Atomizdat, 1968. – 312 s.
12. Bagirov M.A., Malin V.P., Abasov S.A. Vozdeystvie elektricheskikh razryadov na polimernye
dielektriki [The effect of electrical discharges on polymer dielectrics]. Baku: Elm, 1975, 168 p.
13. Madorskiy S. Termicheskoe razlozhenie organicheskikh polimerov [Thermal decomposition of
organic polymers]. Moscow: Mir, 1967, 328 p.
14. Artbauer J., Griac J. Der Durschlag von Kunststoffen unter Einwirkung von
Glimmentlandugen, Еlektrie, 1964, H. 4, pp. 120-124.
15. Gordon G.Ya. Stabilizatsiya sinteticheskikh polimerov [Stabilization of synthetic polymers].
Moscow: Goskhimizdat, 1963, 300 p.
16. Finkel' 3.E., Leshchenko S.S., Braginskiy R.P. Radiatsionnaya khimiya i kabel'naya tekhnika
[Radiation chemistry and cable technology]. Moscow: Atomizdat, 1968, 312 p.
17. Makarov E.F. Spravochnik po elektricheskim setyam 0,4–35 kV i 110–1150 kV [Electric voltage
regulator 0.4–35 kV and 110-1150 kV]. Moscow: Papirus PRO, 2004, Vol. 3, 674 p.
18. Khaitan et al. Design Techniques and Applications of Cyber Physical Systems: A Survey,
IEEE Systems Journal, 2014.
19. Poluyanovich N.K., Dubyago M.N. Prognozirovanie resursa kabel'nykh liniy s ispol'zovaniem
metoda iskusstvennykh neyronnykh setey [Forecasting the resource of cable lines using the
method of artificial neural networks], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU.
Engineering Sciences], 2019, No. 3 (205), pp. 51-62.
20. Poluyanovich N.K., Azarov N.V., Dubyago M.N. Neyrokomp'yuternoe upravlenie propusknoy
sposobnost'yu kabel'nykh setey posredstvom ucheta i kontrolya ikh parametrov // Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2022, No. 3 (227), pp. 84-100.
21. Anders G.J., Napieralski A., Orlikowski M., Zubert M. Advanced Modeling Techniques for
Dynamic Feeder Rating Systems, IEEE Transactions on Industry Applications, 2003, Vol. 39,
No. 3, pp. 619-626.
22. Anders G.J. Rating of Cables on Riser Poles, in Trays, in Tunnels and Shafts - a Review, IEEE
Transactions on Power Delivery, 1996, Vol. 11, No. 1, pp. 3-11.
23. Poluyanovich N., Azarov N., Dubyago M. Neural network method for monitoring
thermofluctuation processes in cable lines taking into account the interference influence, Conference
Proceedings - 2021 Radiation and Scattering of Electromagnetic Waves, RSEMW
2021, 2021, pp. 455-459.
24. Dubyago, M., Poluyanovich, N. Partial Discharge Signal Selection Method for In-terference
Diagnostics of Insulating Materials, Conference Proceedings - 2019 Ra-diation and Scattering
of Electromagnetic Waves, RSEMW, 2019, 8792693, pp. 124-127.
Published
2024-01-05
Section
SECTION III. ELECTRONICS, INSTRUMENTATION AND RADIO ENGINEERING