THE ARCHITECTURE OF FUNCTIONAL DEVICES OF THE DIGITAL PHOTONIC COMPUTER

  • I.I. Levin Southern Federal University
  • D.А. Sorokin Supercomputers and Neurocomputers Research Center
  • А.V. Kasarkin Supercomputers and Neurocomputers Research Center
Keywords: Digital photonic computer, architecture of DPC, functional devices, paradigm of structural calculation

Abstract

The paper covers the problems of the development of digital photonic computers. Along with
quantum computers, they are one of the possible ways to overcome the crisis of computing performance.
The data processing implementation in digital photonic computers at terahertz frequencies
potentially provides the performance exceeding by two or more decimal orders of magnitude the
performance of the most modern computing systems. Modern research suggests the prospects for
the development of digital photonics. It can provide the performance, significantly exceeding the
performance of microelectronic computers with the same calculation accuracy. At the same time,
largely, the efforts of researchers are aimed at creating digital photonic logic elements, while
architectural issues are considered very superficially. The authors consider the development problems
of the digital photonic computer architecture, which could provide a solution to a wide class
of computationally time-consuming problems in the paradigm of structural calculations.
It is shown that the synchronization and switching subsystem must have a hierarchical topology
with the configuration of information links both in the programming process of a photonic computer
and in the process of solving problems to use this calculation paradigm. The principles of
ensuring the performance and accuracy at solving problems on digital photonic computer with the
chosen data representation method are considered. The authors have developed models of
functional devices of basic arithmetic operations in the basis of photonic logic: the addition
and multiplication in the IEEE 754 standard. The devices are implemented according to the
scheme of linear conveyor with low-order processing forward. Unlike traditional microelectronics,
the proposed approach to the construction of conveyor functional devices does not
involve the use of latch registers. Its implementation leads to excessive hardware co sts in
digital photonic logic. In addition, the branching factor of hardware information links b etween
logical elements is limited at development the computational circuits. This will reducethe problem of signal attenuation. The FPGA has been used to prototype the developed functional
addition and multiplication devices and to evaluate the performance of computing
structures, implemented on DPC, similar to structures in mathematical physics problems at
performing operations such as "matrix multiplication by vector".

References

1. Chernyak L. Zakon Amdala i budushchee mnogoyadernykh protsessorov [Amdahl's Law and
the future of multi-core processors], Otkrytye sistemy. SUBD [Open Systems. DBMS], 2009,
No. 04. Available at: https://www.osp.ru/os/2009/04/9288815/ (accessed 15 September 2023).
2. Moore Gordon. No Exponential is Forever: But “Forever” Can Be Delayed!, International
Solid–State Circuits Conference (ISSCC), 2003. Session 1. Plenary 1.1. of the IEEE, November
2003, Vol. 91, Nо. 11, pp. 1934-1939.
3. Benioff P. Quantum mechanical hamiltonian models of turing machines (англ.) // Journal of
Statistical Physics, 1982, Vol. 29, No. 3, pp. 515-546. DOI: 10.1007/BF01342185.
4. D-Wave Announces General Availability of First Quantum Computer Built for Business. Available
at: https://www.dwavesys.com/company/newsroom/press-release/d-wave-announces-generalavailability-
of-first-quantum-computer-built-for-business/ (accessed 15 September 2023).
5. Dalzell A.M., Harrow A.W., Koh D.E., Placa R.L.L. How many qubits are needed for quantum
computational supremacy?, Quantum, 2020, 4, 264. DOI: 10.48550/arXiv.1805.05224.
6. Shubin V.V., Balashov K.I. Patent № 2677119 C1. Rossiyskaya Federatsiya, MPK G02F 3/00,
G02F 1/095. Polnost'yu opticheskiy logicheskiy bazis na osnove mikrokol'tsevogo rezonatora
[Patent No. 2677119 C1. Russian Federation, IPC G02F 3/00, G02F 1/095. All-optical logic
basis based on a microring resonator: No. 2018111870]: zayavl. 02.04.2018: opubl.
15.01.2019; declared 04/02/2018: publ. 01/15/2019; The applicant is the Russian Federation,
on behalf of which the State Atomic Energy Corporation "Rosatom", the Federal State Unitary
Enterprise "Russian Federal Nuclear Center - All-Russian Research Institute of Experimental
Physics" (FSUE "RFNC-VNIIEF") acts.
7. Tamer A. Moniem All-optical XNOR gate based on 2D photonic-crystal ring resonators,
Quantum Electronics, 2017, 47 (2), 169. DOI: 10.1070/QEL16279.
8. Next generation photonic memory devices are ‘light-written’, ultrafast and energy efficient, 2019.
Available at: https://www.tue.nl/en/news/news-overview/10-01-2019-next-generation-photonicmemory-
devices-are-light-written-ultrafast-and-energy-efficient/ (accessed 15 September 2023).
9. Using light for next-generation data storage, 2018. Available at: https://phys.org/news/2018-
06-next-generation-storage.html (accessed 15 September 2023).
10. Zhang Q., Xia Z., Cheng YB. et al. High-capacity optical long data memory based on enhanced
Young’s modulus in nanoplasmonic hybrid glass composites, Nat Commun., 2018, 9 (1), 1183.
DOI: 10.1038/s41467-018-03589-y.
11. Gordeev A., Voytovich V., Svyatets G. Perspektivnye fotonnye i fononnye otechestvennye
tekhnologii dlya teragertsovykh mikroprotsessorov, OZU i interfeysa so sverkhnizkim
energopotrebleniem [Promising photonic and phonon domestic technologies for terahertz microprocessors,
RAM and interface with ultra-low power consumption], Sovremennaya
elektronika [Modern Electronics.], No. 2, 22. Available at: https://www.soel.ru/online/
perspektivnye-fotonnye-i-fononnye-otechestvennye-tekhnologii-dlya-teragertsovykhmikroprotsessorov-
o/ (accessed 15 September 2023).
12. Starikov R.S. Opticheskie korrelyatory izobrazheniy: istoriya i sovremennoe sostoyanie [Optical
image correlators: history and current state], HOLOEXPO 2019: XVI mezhdunarodnaya
konferentsiya po golografii i prikladnym opticheskim tekhnologiyam: Tezisy dokladov
[HOLOEXPO 2019: XVI International Conference on Holography and Applied Optical Technologies:
Abstracts]. Moscow: MGTU im. N.E. Baumana, 2019, pp. 82-90.
13. Lugt A.V. Signal detection by complex spatial filtering, IEEE Transactions on Information
Theory, April 1964, Vol. 10, Issue 2, pp. 139-145. DOI: 10.1109/TIT.1964.1053650.
14. Henri H. Arsenault, Yunlong Sheng. An Introduction to Optics in Computers. Vol. 8 of Tutorial
texts in optical engineering. SPIE Press, 1992. DOI: 10.1117/3.2569178.
15. Richard V. Stone; Frederick F. Zeise and Peter S. Guilfoylev "DOC II 32–bit digital optical
computer: optoelectronic hardware and software", Proc. SPIE 1563, Optical Enhancements to
Computing Technology, 267 (December 1, 1991). DOI: 10.1117/12.49689.
16. Jacob Barhen, Charlotte Kotas, Travis S Humble, Pramita Mitra, Neena Imam, Mark ABuckner,
and Michael R Moore. High performance fft on multicore processors, In 2010Proceedings of the
Fifth International Conference on Cognitive Radio Oriented WirelessNetworks and Communications.
IEEE, 2010, P. 1-6. DOI: 10.4108/ICST.CROWNCOM2010.9283.
17. Stepanenko S.A. Interferentsionnye logicheskie elementy [Interference logic elements],
Doklady Rossiyskoy akademii nauk. Matematika, informatika, protsessy upravleniya [Reports
of the Russian Academy of Sciences. Mathematics, computer science, management processes],
2020, Vol. 493, pp. 68-73.
18. Kuznetsova O.V., Speranskiy V.S. Reshenie zadach obrabotki opticheskikh signalov bez
optoelektronnogo preobrazovaniya [Solving problems of processing optical signals without
optoelectronic conversion], Telekommunikatsiya i transport. T-Comm [Telecommunication
and transport. T-Comm], 2012, No. 8, pp. 35-39.
19. Xiaoting Wu, Jinping Tian, Rongcao Yang. A Type of All-Optical Logic Gate Base on
Graphene Surface Plasmon Polaritons, Optics Communications, 2017, Vol. 403, pp. 185-192.
20. Papaioannou M., Plum E., Valente J., Rogers E.T.F., Zheludev N.I. All-Optical Multichannel
Logic Based on Coherent Perfect Absorption in a Plasmonic Metamaterial, APL PHOTONICS,
2016, No. 1. 090801. Available at: https://doi.org/10.1063/1.4966269.
21. Hussein M.E., Tamer A.Ali, Nadia H.Rafab. New Design of a Complete Set of Photonic Crystals
Logic Gates, Optics Communications, 2018, Vol. 411, pp. 175-181. DOI:
10.1016/j.optcom.2017.11.043.
22. Stepanenko S.A. Fotonnaya vychislitel'naya mashina. Printsipy realizatsii. Otsenki parametrov
[Photonic computer. Implementation principles. Parameter estimates], Doklady Akademii nauk
[Reports of the Academy of Sciences], 2017, Vol. 476, No. 4, pp. 389-394. DOI:
10.1134/S1064562417050234.
23. Levin I.I., Sorokin D.A., Kasarkin A.V. Perspektivnaya arkhitektura tsifrovoy fotonnoy
vychislitel'noy mashiny [Promising architecture of a digital photonic computing machine],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2022, No. 6
(230), pp. 61-71. ISSN 1999-9429. DOI: 10.18522/2311-3103-2022-6-61-71.
24. Sorokin D.A., Kasarkin A.V., Podoprigora A.V. Elements of a Digital Photonic Computer,
Supercomputing Frontiers and Innovations, 2023, Vol. 10, No. 2, pp. 62-76. DOI:
https://doi.org/10.14529/jsfi230205.
25. Besedin I.V., Dmitrenko N.N., Kalyaev I.A., Levin I.I., Semernikov E.A. Semeystvo bazovykh
moduley dlya postroeniya rekonfiguriruemykh vychislitel'nykh sistem so strukturnoprotsedurnoy
organizatsiey vychisleniy [A family of basic modules for building reconfigurable
computing systems with a structural and procedural organization of calculations ], Nauchnyyservis v seti Internet: Tr. Vserossiyskoy konferentsii – MGU, RGU, IVT RAN, 2006 [Scientific
service on the Internet: Proceedings of the All-Russian Conference - Moscow State University,
Russian State University, ICT RAS, 2006], pp. 47-49.
26. Kalyaev I.A., Levin I.I. Rekonfiguriruemye mul'tikonveyernye vychislitel'nye sistemy dlya
resheniya potokovykh zadach [Reconfigurable multi-pipeline computing systems for solving
streaming problems], Informatsionnye tekhnologii i vychislitel'nye sistemy [Information technologies
and computing systems], 2011, No. 2, pp. 12-22.
27. Kalyaev I.А., Levin I.I., Semernikov E.A., Shmoilov V.I. Reconfigurable Multipipeline Computing
Structures Published by Nova Science Pu-blishers, Inc. (New York, USA). 2012, 345 p.
ISBN: 978-1-61942-854-6.
28. NITS SE i NK. Tertsius-2. © Copyright 2004-2018. OOO "NITS super-EVM i
neyrokomp'yuterov" [Research Center for SE and NK. Tertius-2. © Copyright 2004-2018.
LLC "Research Center for Super-Computers and Neurocomputers"]. Available at:
http://superevm.ru/index.php?page=tertsius-2 (accessed 15 September 2023).
Published
2024-01-05
Section
SECTION II. DATA ANALYSIS AND MODELING