FEATURES OF MATHEMATICAL MODELING IN THE GROUND LAYER ELECTRODYNAMICS

  • D.V. Timoshenko Southern Federal University
Keywords: Mathematical modeling, electrodynamics, surface layer, atmosphere, electrode effect, electric field

Abstract

The paper examines the problem of integrating the system of electrodynamic equations of
the atmosphere surface layer for various cases of the electrode effect. The original system of differential
equations of the electrode effect is reduced to the so-called total current equation, which
is a second-order equation of parabolic type, considered in a two-dimensional space-time region.
The total current equation allows us to relate the set of main factors influencing the state of the
electric field in the atmosphere surface layer: conduction current, turbulent current and current
arising as a result of convective processes in the atmosphere with the so-called total current in the
surface layer, reflecting changes in the potential of the ionosphere. The described method provides
significant advantages in the study, since within the framework of one model it allows the formulation
of various problems of the surface layer electrodynamics and a comparative analysis of the
influence of both individual factors and their combinations on the behavior of the electric field in
the surface layer. The purpose of the work is to analyze the mathematical aspects of the models
under consideration from the point of view of approaches to integrating the total current equation.
The study compares the features of physical formulations and their influence on the structure of
mathematical models and their properties from the point of view of mathematical physics. The
various physical formulations considered show that even in a relatively simple mathematical model
consisting of one equation supplemented with initial boundary conditions, a fairly wide range of
both model formulations and approaches to integrating the considered models arises.

References

1. Morozov V.N. Atmosfernoe elektrichestvo [Atmospheric electricity], Atmosfera. Spravochnik
(spravochnye dannye, modeli) [Atmosphere. Directory (reference data, models)]. Leningrad:
Gidrometeoizdat, 1991, pp. 394-408.
2. Kupovykh G.V., Morozov V.N., Shvarts Ya.M. Teoriya elektrodnogo effekta v atmosphere
[Theory of the electrode effect in the atmosphere]. Taganrog: Izd-vo TRTU, 1998, 123 p.
3. Kupovykh G.V. Elektrodinamicheskie protsessy v prizemnom sloe atmosfery [Electrodynamic
processes in the surface layer of the atmosphere]. Taganrog: Izd-vo TTI YuFU, 2009, 114 p.
4. Svidel'skiy S.S., Litvinova V.S., Kupovykh G.V., Klovo A.G. Formirovanie struktury
atmosfernogo elektrodnogo sloya [Formation of the structure of the atmospheric electrode layer],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2020,
No. 5, pp. 130-141.
5. Shuleykin V.N., Shchukin G.G., Kupovykh G.V. Razvitie metodov i sredstv prikladnoy
geofiziki – atmosferno-elektricheskiy monitoring geologicheskikh neodnorodnostey i zon
geodinamicheskikh protsessov [Development of methods and means of applied geophysics -
atmospheric-electric monitoring of geological heterogeneities and zones of geodynamic processes].
Saint Petersburg: RGGMU, 2015, 206 p.
6. Adzhiev A.Kh., Klovo A.G., Kudrinskaya T.V., Kupovykh G.V., Timoshenko D.V. Sutochnye
variatsii elektricheskogo polya v prizemnom sloe atmosfery [Daily variations of the electric
field in the surface layer of the atmosphere], Izvestiya RAN. Fizika atmosfery i okeana
[Izvestia RAS. Physics of the atmosphere and ocean], 2021, Vol. 57, No. 4, pp. 452-461.
7. Kupovykh G.V., Belousova O.V., Timoshenko D.V., Klovo A.G., Kudrinskaya T.V.
Elektrodinamicheskaya model' turbulentno-konvektivnogo prizemnogo sloya: priblizhennye
analiticheskie resheniya [Electrodynamic model of the turbulent-convective surface layer: approximate
analytical solutions], Mater. IX Vserossiyskoy nauchnoy konferentsii po
atmosfernomu elektrichestvu [Materials of the IX All-Russian Scientific Conference on Atmospheric
Electricity]. Saint Petersburg: VKA im. A.F. Mozhayskogo, 2023, pp. 488-496.
8. Belousova O.V., Timoshenko D.V., Kupovykh G.V. Matematicheskoe modelirovanie
elektricheskoy struktury turbulentno-konvektivnogo prizemnogo sloya [Mathematical modeling
of the electrical structure of the turbulent-convective surface layer], Radiotekhnicheskie i
telekommunikatsionnye sistemy [Radio engineering and telecommunication systems], 2023,
No. 3 (51), pp. 12-19.
9. Kupovykh G.V., Timoshenko D.V. Klovo A.G., Kudrinskaya T.V. Vliyanie elektrodnogo effekta
na sutochnye variatsii elektricheskogo polya atmosfery v prizemnom sloe [Influence of the
electrode effect on daily variations of the atmospheric electric field in the surface layer],
Optika atmosfery i okeana [Optics of the atmosphere and ocean], 2023, Vol. 36, No. 10,
pp. 834-838.
10. Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of mathematical
physics]. Moscow: Nauka, 1972, 736 p.
11. Mikhlin S.G. Variatsionnye metody v matematicheskoy fizike [Variational methods in mathematical
physics]. Moscow: Gostekhizdat, 1957, 450 p.
12. Williams E.R., Mareev E.A. Recent progress on the global electrical circuit, Atmos. Res., 2014,
Vol. 135–136, pp. 208-227.
13. Liu C., Williams E.R., Zipser E.J., Burns G. Diurnal variation of global thunderstorms and
electrified shower clouds and their contribution to the global electrical circuit, J. Atmos. Sci.,
2010, Vol. 67, No. 2, pp. 309-323.
14. Mach D.M., Blakeslee R.J., Bateman M.G. Global electric circuit implications of combined
aircraft storm electric current measurements and satellite-based diurnal lightning statistics, J.
Geophys. Res., 2011, Vol. 59, No. 1, pp. 183-204.
15. Harrison R.G. The Carnegie curve, Surveys in Geophysics, 2013, 34 (2), pp. 209-232.
16. Kupovykh G.V., Timoshenko D.V., Klovo A.G., Kudrinskaya T.V. Electrodynamic processes
models in atmospheric surface layer, CATPID-2019. IOP Conf. Series: Materials Science and
Engineering, 2019, Vol. 698 (4), pp. 44034.
17. Kupovykh G., Klovo A., Timoshenko D. The atmospheric electric field variations in the surface
layer, Russian Open Conference on Radio Wave Propagation (RWP). 1-6 July 2019. Publisher:
IEEE, 2019, pp. 580-583.
18. Kupovykh G.V., Timoshenko D.V., Kudrinskaya T.V., Klovo A.G. Modeling of the atmospheric
electric field local variations in the turbulent surface layer, Journal of Physics: IOP Conference
Series. VIII All-Russian Conference on Atmospheric Electricity, 2020, Vol. 1604 (1),
pp. 012003.
19. Hoppel W.A. Theory of the electrode effect, Journal Atmospheric and Terrestrial Physics,
1967, Vol. 29, No. 6, pp. 709-721.
20. Evtushenko A.A., Mareev E.A. On the generation of charge layers in MCS stratiform regions,
Atmospheric Research, 2009, Vol. 91, pp. 272-280.
21. Kudrinskaya T.V., Klovo A. G., Kupovykh G.V., Timoshenko D.V. Reduction coefficient and
electric field near plane electrode with geometric heterogeneity, Journal of Physics: IOP Conf.
Series. VIII All-Russian Conference on Atmospheric Electricity, 2020, Vol. 1604 (1),
pp. 012005.
Published
2023-12-11
Section
SECTION II. DATA ANALYSIS AND MODELING