INVESTIGATION OF HEAT TRANSFER PROCESSES IN A HEATING DEVICE FOR THERMAL MIGRATION OF LIQUID INCLUSIONS IN SILICON

  • B.М. Seredin South Russian State Polytechnic University (NPI) named after M.I. Platov
  • V.P. Popov South Russian State Polytechnic University (NPI) named after M.I. Platov
  • А. V. Malibashev South Russian State Polytechnic University (NPI) named after M.I. Platov
  • М.B. Zinenko South Russian State Polytechnic University (NPI) named after M.I. Platov
  • А. А. Skidanov VSP-Micron Joint Stock Company
Keywords: Thermomigration, heating device, computer modeling, temperature gradient

Abstract

Liquid inclusions migrate in solids in the direction of the temperature gradient. This gives a
unique opportunity to form crystal perfect structures in silicon wafers with through-doped epitaxial
channels or closed cells, which are of interest in the design of power semiconductor devices and
photovoltaic converters. Moreover, there are no competitive methods of manufacturing such structures,
since the rate of thermal migration is four orders of magnitude higher than the rate of solidstate
diffusion. However the practical application of the thermomigration (TM) method in semiconductor
electronics is hindered by the unsolved problem of creating the necessary homogeneous
temperature gradient field in a silicon wafer. Violation of the uniformity of the temperature gradient
leads to a deviation of the trajectories of discrete liquid inclusions from the normal and distorts
the specified topology of inclusions on the starting surface of the plate and makes it impossible
to use group technology to obtain subsequent manufacturing operations of semiconductor
devices. In this paper, a computer simulation of heat transfer processes in a heating device is performed
in order to achieve a homogeneous temperature gradient field in a silicon wafer created by
a flat resistive heating element in the form of a spiral. The causes of periodic and monotonous
radial inhomogeneities of the temperature gradient field that distort the trajectories of liquid inclusions
and the shape of the resulting channels are revealed. Ways to reduce and eliminate these
distortions are proposed. The main controls for the configuration of the temperature gradient field
in the silicon wafer turned out to be a cassette holding the wafer at a certain distance from the
heating element and front screens with holes coaxial to the silicon wafer. The dimensions and
mutual arrangement of the elements of a heating device providing the required uniformity of the
temperature gradient field for industrial applications of thermal migration of a system of linear
inclusions of zones on silicon wafers with a diameter of 100 mm have been determined and experimentally
confirmed.

References

1. Pfann W.G. Zone Melting. 2n ed. New York, 1966, 310 р.
2. Lozovskiy V.N., Lunin L.S., Popov V.P. Zonnaya perekristallizatsiya gradientom temperatury
poluprovodnikovykh materialov [Zone recrystallization by temperature gradient of semiconductor
materials]. Moscow: Metallurgiya, 1987, 232 p.
3. Anthony T.R., Boah J.K., Chang M.F., Cline H.E. Thermomigration processing of isolation
grids in power structures, IEEE Transactions on Electron Devices, 1976, Vol. 23, No. 8,
pp. 818-823.
4. Chang M., Kennedy R. The Application of Temperature Gradient Zone Melting to Silicon
Wafer Processing, Journal Electrochem Soc., 1981, Vol. 128, No. 10, pp. 2193-2198.
5. Cline H.E. and Anthony T.R. High speed droplet migration silicon, Journal of Applied Physics,
1976, Vol. 47, No. 10, pp. 2325-2331.
6. Cline H.E. and Anthony T.R. Thermomigration of aluminiam-rich liquid wires through silicon,
Journal Appl. Phys., 1976, Vol. 47, No. 6, pp. 2332-2336.
7. Cline H.E. and Anthony T.R. On the thermomigration of liquid wires, Journal of Applied Physics,
1978, Vol. 479, No. 5, pp. 2777-2786.
8. Polukhin A.S., Zueva T.K., Solodovnik A.I. Ispol'zovanie termomigratsii v tekhnologii struktur
silovykh poluprovodnikovykh priborov [The use of thermal migration in the technology of
structures of power semiconductor devices], Silovaya elektronika [Power Electronics], 2006,
Vol. 3 (9), pp. 110-112.
9. Polukhin A.S. Termomigratsiya neorientirovannykh lineynykh zon v kremnievykh plastinakh
(100) dlya proizvodstva chipov silovykh poluprovodnikovykh priborov [Thermomigration of
unoriented linear zones in silicon wafers (100) for the production of power semiconductor device
chips], Komponenty i tekhnologii [Components and Technologies], 2008, Vol. 11, pp. 97-100.
10. Polukhin A.S. Analiz tekhnologicheskikh faktorov protsessa termomigratsii [Analysis of technological
factors of the thermomigration process], Silovaya elektronika [Power Electronics],
2013, Vol. 5 (9), pp. 118-120.
11. Lozovskiy V.N., Seredin B.M., Polukhin A.S., Solodovnik A.I. Oborudovanie dlya polucheniya
kremnievykh struktur metodom termomigratsii [Equipment for producing silicon structures by
thermomigration], Elektronnaya tekhnika. Seriya 2: Poluprovodnikovye pribory [Electronic
technology. Series 2: Semiconductor devices], 2015, No. 5 (239), pp. 65-76.
12. Polukhіn O.S. Vikoristannya termomіgratsії v tekhnologії silovikh napіvprovіdnikovikh
priladіv [Vicious thermomigration in the technology of power conductor devices],
Radіoelektronіka, іnformatika, upravlіnnya [Radioelectronics, informatics, control], 2018,
No. 3, pp. 16-24.
13. Polukhin O.S., Kravchina V.V. Thermomigration of non-oriented aluminium-rich liquid zones
through (110) silicon wafers, Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2021,
No. 5-6, pp. 33-40.
14. Cline H.E., Anthony T.R. Patent 4087239 United States, Int. C1.2 F27B 9/14. Apparatus for
imparting combined centrosymmetric and noncentro-symmetric rotation to semiconductor
bodies. No.: 733239. May 2, 1978.
15. Roger H. Brown, Kuen Chow, Norman W. Goodwin, Jan Grinberg. Patent 4523067 United
States, Int. C1.3 H05B 6/10. Temperature gradient zone melting apparatus. No.: 366901. June
11, 1985.
16. Morillon В. Etude de la thermomigration de l’aluminium dans le silicium pour la réalisation
industrielle de murs d’isolation dans les composants de puissance bidirectionnels, Micro et
nanotech nologies/Microélectronique. INSA de Toulouse, 2002. Français.
17. Bin Lu. Realisation De Peripheries Innovantes De TRIAC Par Thermomigration D’aluminium
Et Insertion De Silicium Poreux. Univerite Froacois Rabelais De Tours, 2017
18. Lomov A.A., Seredin B.M., Gavrus I.V., Martyushov S.Yu. Aluminum doped thermomigrated
silicon channels for high voltage solar cell: Structure and electrical properties, Proc. SPIE
12157, International Conference on Micro- and Nano-Electronics, 2021, pp 1215703.
19. Ansys. Available at: https://www.ansys.com.
20. Sheludyak Yu.E., Kashporov L.Ya., Malinin L.A., TSalkov V.N. Teplofizicheskie svoystva
komponentov goryuchikh sistem: Spravochnik [Thermophysical properties of components of
combustible systems: Handbook], ed. by N.A. Silina; NPO "Inform TEI". Moscow, 1992, 92 p.
21. Vigdorovich V.N., Gershanov V.Yu., Konstantinova G.S., Lozovskiy V.N., Popov V.P. Zonnaya
plavka s gradientom temperatury kak metod fizicheskikh issledovaniy [Zone melting with a
temperature gradient as a method of physical research], Zavodskaya laboratoriya [Factory Laboratory],
1970, No. 11, pp. 1350-1364.
Published
2023-10-23
Section
SECTION III. ELECTRONICS, NANOTECHNOLOGY AND INSTRUMENTATION