HARDWARE-ORIENTED METHOD FOR RECONFIGURING A GROUP OF MOBILE OBJECTS

  • Е.А. Titenko South-West State University
  • I.Е. Chernetskaya South-West State University
  • L. А. Lisitsyn South-West State University
  • М. А. Titenko South-West State University
  • S.I. South-West State University
Keywords: Connectivity matrix, distribution, graph, metric, search for values, network map

Abstract

The article describes approaches and methods for managing a group of moving objects,
characterized by the ability to autonomously make decisions about their status within the group.
Another problem of managing such a grouping is weak predictive solutions for the connectivity of
pairs of elements and their dependence on a single control center. Nanosatellites operating under
conditions of uncertainty in the internal and external environment are considered as such objects.
The goal is to ensure the coherence of the group’s apparatus through a decentralized change in
structure. It is shown that methods and algorithms for dynamic reconfiguration of a group of moving
objects predominantly use a centralized approach and a single ground control center, which is
impractical for small space exploration. A class of management methods using knowledge processing
methods and technology (artificial intelligence technology) is considered, allowing for the
identification and use of additional information about the configuration of the group. Configuration
is understood as a dual system that describes the composition and connections between neighboring elements with some quantitative assessment. The article checks the connectivity configuration
of elements to ensure continuous data transfer between a pair of arbitrary grouping
elements. The proposed reconfiguration method is hierarchical: at the upper level, reconfiguration
is based on the principles of self-organization; at the lower level, the grouping is understood as an
adaptive system that changes its state based on a trained neural network based on historical data -
time series of parameters of devices and their locations. The method is a two-level cycle of polling
each element for grouping its neighbors and drawing up a network map. This network map shows
the available connections, taking into account the current steam numbers of each device. The second
(nested) polling cycle uses control information about the future state of the device and the
connectivity of the group as a whole. Making changes to the network map instances by each device
and updating the network map instances allows, upon completion of the polling cycles, to obtain
the configuration of working devices. The results of the comparative analysis showed that management
methods based on the principles of self-organization and adaptive change in structure are
the most suitable for dynamic reconfiguration of the group. This result is possible due to the support
of forecasting steps.

References

1. Klyushnikov V.Yu. Postroenie klasterov malykh kosmicheskikh apparatov [Construction of
clusters of small spacecraft], Izvestiya vuzov. Priborostroenie [News of universities. Instrumentation],
2016, Vol. 59, No. 6, pp. 423-428.
2. Skripachev V.O., Zhukov A.O., Bashkatov A.I. Osobennosti postroeniya klastera malykh
kosmicheskikh apparatov [Features of constructing a cluster of small spacecraft], Tekhnologii
polucheniya i obrabotki informatsii o dinamicheskikh ob"ektakh i sistemakh: Sb. materialov III
Vserossiyskoy nauchno-prakticheskoy konferentsii [Technologies for obtaining and processing
information about dynamic objects and systems: Collection of materials of the III All-Russian
scientific -practical conference]. Moscow: AO "Osoboe konstruktorskoe byuro Moskovskogo
energeticheskogo instituta", 2023, pp. 351-364.
3. Atakishchev O.I., Shilenkov E.A., Frolov S.N. [i dr.]. Avtonomnaya intellektual'naya gruppirovka
malykh kosmicheskikh apparatov – kosmicheskiy eksperiment "radioskaf-5" [Autonomous intelligent
grouping of small spacecraft - space experiment "Radioscaf-5"], Izvestiya Instituta inzhenernoy
fiziki [News of the Institute of Engineering Physics], 2020, No. 1 (55), pp. 42-48.
4. Poluyan M.M., Naumochkin D.V., Petukhov I.A. Analiz tendentsiy razvitiya sverkhmalykh
kosmicheskikh apparatov [Analysis of development trends of ultra-small spacecraft],
Vooruzhenie i ekonomika [Armament and Economics], 2019, No. 4, Issue 50, pp. 23-32.
5. Makarenko D.M., Potyupkin A.Yu. Sistemnyy analiz kosmicheskikh apparatov [System analysis
of spacecraft]. Moscow: Izd-vo MO RF, 2007, 331 p.
6. Palkin M.V. Kontseptual'nye voprosy sozdaniya i primeneniya kosmicheskikh apparatov
gruppovogo poleta [Conceptual issues of the creation and application of group flight spacecraft],
Nauka i obrazovanie [Science and Education], 2015, No. 8, pp. 100-115.
7. Potyupkin A.Yu., Danilin N.S., Selivanov A.S. Klastery malorazmernykh kosmicheskikh
apparatov kak novyy tip kosmicheskikh ob"ektov [Clusters of small-sized spacecraft as a new
type of space objects], Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy [Rocket
and space instrument engineering and information systems], 2017, Vol. 4, No. 4, pp. 45-56.
8. Zhdanov A.A. Avtonomnyy iskusstvennyy intellect [Autonomous artificial intelligence]. Moscow:
Binom. Laboratoriya znaniy, 2008, 359 p.
9. Klyushnikov V.Yu. Intellektual'naya sistema avtomaticheskogo podderzhaniya i vospolneniya
klastera malykh kosmicheskikh apparatov informatsionnogo naznacheniya [Intelligent system
for automatic maintenance and replenishment of a cluster of small spacecraft for information
purposes], K.E. TSiolkovskiy. Istoriya i sovremennost': Mater. 57-kh Nauchnykh chteniy,
posvyashchennykh razrabotke nauchnogo naslediya i razvitiyu idey K.E. Tsiolkovskogo, Kaluga,
20–22 sentyabrya 2022 goda [K.E. Tsiolkovsky. History and modernity: Materials of the
57th Scientific Readings dedicated to the development of the scientific heritage and the development
of ideas of K.E. Tsiolkovsky, Kaluga, September 20–22, 2022]. Vol. Part 1. Kaluga:
Individual'nyy predprinimatel' Strel'tsov I.A., 2022, pp. 39-41.
10. Gritsenko A.E., Slinin S.I., Rubinov V.I. Problemnye voprosy realizatsii iskusstvennyy
intellekta v kompleksakh s bespilotnymi letatel'nymi apparatami [Problematic issues of implementing
artificial intelligence in complexes with unmanned aerial vehicles], Voennokosmicheskie
sily. Teoriya i praktika [Military Space Forces. Theory and practice], 2019,
No. 12, pp. 126-134.
11. Lyamkin I.V., Kostyashina A.A. Sovremennye podkhody k modelirovaniyu intellektual'nykh
sistem upravleniya. Ch. 2. Avtonomnyy "Hard" i "Soft" – evolyutsiya kompetentsiy [Modern
approaches to modeling intelligent control systems. Part 2. Autonomous “Hard” and “Soft” -
the evolution of competencies], Nauka i tekhnologii truboprovodnogo transporta nefti i
nefteproduktov [Science and technology of pipeline transport of oil and petroleum products],
2022, Vol. 12, No. 2, pp. 198-216.
12. Melekhin V.B., Khachumov M.V. Popolnenie znaniy avtonomnogo bespilotnogo
kvadrokoptera-manipulyatora v neopredelennoy problemnoy srede [Replenishing the
knowledge of an autonomous unmanned quadcopter-manipulator in an uncertain problem environment],
Iskusstvennyy intellekt i prinyatie resheniy [Artificial intelligence and decision
making], 2019, No. 2, pp. 72-83.
13. Matyukha S.V. Iskusstvennyy intellekt v bespilotnykh aviatsionnykh sistemakh [Artificial intelligence
in unmanned aerial systems], Transportnoe delo Rossii [Transport business of Russia],
2022, No. 1, pp. 8-11.
14. Perlyuk V.V., Nebylov A.V., Syao Yan Kh. Opyt razrabotki bortovykh sistem maketov
mikrosputnikov v ramkakh mezhdunarodnykh nauchno-obrazovatel'nykh programm [Experience
in developing on-board systems for microsatellite models within the framework of international
scientific and educational programs], Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie
[Izvestiya higher textbook establishments. Instrumentation], 2018, No. 8, pp. 685-691.
15. Zori A.A., Korenev V.D. Kriterii otsenivaniya effektivnosti informatsionno-izmeritel'nykh
sistem [Criteria for assessing the effectiveness of information-measuring systems], Izvestiya
YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2008, pp. 40-46.
16. Panteleymonov I.N, Potyupkin A.Yu., Tran'kov V.M., Panteleymonova A.V., Filatov V.V.,
Todurkin V.V. Metodika rascheta pokazateley effektivnosti sistemy upravleniya poletom
kosmicheskikh apparatov [Methodology for calculating the efficiency indicators of the spacecraft
flight control system], Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [News
of higher educational institutions. Mechanical engineering], 2019, Issue 11 (716), pp. 55-65.
17. Zheltov S.Yu., Kalyaev I.A., Kos'yanchuk V.V. [i dr.]. Rekonfiguratsiya sistem upravleniya
vozdushnykh sudov [Reconfiguration of aircraft control systems]. Moscow: Rossiyskaya
akademiya nauk, 2021, 204 p.
18. Klimenko A.B., Mel'nik E.V. Metody organizatsii raspredelennoy razmetki dannykh na osnove
grupp pol'zovateley s dinamicheskim sostavom [Methods for organizing distributed data marking
based on user groups with dynamic composition], Izvestiya Tul'skogo gosudarstvennogo
universiteta. Tekhnicheskie nauki [News of Tula State University. Technical science], 2021,
No. 2, pp. 234-245. EDN SXJVIN.
19. Sollogub A.V., Skobelev P.O., Simonova E.V. i dr. Intellektual'naya sistema raspredelennogo
upravleniya gruppovymi operatsiyami klastera malorazmernykh kosmicheskikh apparatov v
zadachakh distantsionnogo zondirovaniya zemli [Intelligent system for distributed control of group
operations of a cluster of small-sized spacecraft in tasks of remote sensing of the earth], Vestnik
Samarskogo GTU [Bulletin of Samara State Technical University], 2012, No. 7 (28), pp. 47-54.
20. Potyupkin A.Yu., Volkov S.A., Timofeev Yu.A. Gruppovoe upravlenie mnogosputnikovoy
orbital'noy gruppirovkoy na osnove kontseptsii rezhimov sovmestnogo funktsionirova-niya
[Group control of a multi-satellite orbital constellation based on the concept of joint operation
modes], Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy: nauchno-tekhn.
zhurn [Rocket and space instrument making and information systems: scientific and technical
journal], 2021, Vol. 8, Issue 3, pp. 11-19.
21. Volkov S.A., Potyupkin A.Yu., Timofeev Yu.A. Upravlenie sistemnym effektom
mnogosputnikovoy orbital'noy gruppirovki [Control of the system effect of a multi-satellite
orbital constellation], Problemy sozdaniya i primeneniya kosmicheskikh apparatov i sistem
sredstv vyvedeniya v interesakh resheniya zadach VS RF: materialy III Vserossiyskoy
nauchno-prakt. konf. [Problems of creation and application of spacecraft and launch vehicle
systems in the interests of solving problems of the RF Armed Forces: materials of the III All-
Russian scientific-practical conference. conf.]. Saint Petersburg: Voenno-kosmicheskaya
akademiya imeni A.F. Mozhayskogo, 2022, pp. 251-257.
22. Titenko E.A., Dobroserdov O.G., Shchitov A.N., Titenko M.A. Apparatno-orientirovannyy
metod parallel'nogo poiska prefiksa i suffiksa po podstrokam fiksirovannoy dliny [Hardwareoriented
method of parallel search for prefix and suffix using substrings of fixed length],
T-Comm: Telekommunikatsii i transport [T-Comm: Telecommunications and Transport],
2022, Vol. 16, No. 4, pp. 29-36.
Published
2023-10-23
Section
SECTION I. INFORMATION PROCESSING ALGORITHMS