ALGORITHM FOR DETECTING FINE MOTOR DEFECTS BASED ON INFORMATION FROM SMARTPHONE SENSORS

  • А.А. Egorchev Kazan (Volga Region) Federal University
  • D.E. Kazan (Volga Region) Federal University
  • D.М. Pashin Kazan (Volga Region) Federal University
  • А.F. Fahrutdinov Research center "Center of excellence special robotics and artificial intelligence" of the Institute of computer mathematics and information technologies
  • P.А. Kokunin Kazan (Volga Region) Federal University
Keywords: Non-invasive monitoring, biomedical monitoring, fine motor skills, fine motor defect, smartphone diagnostics, processing of accelerometer readings, neurological disorders, accelerometer

Abstract

Digitalization is the leading trend of modern humanity. It allows you to solve many everyday
tasks with the help of devices with specialized algorithms, facilitating everyday life, as well as
solving a number of tasks for which qualified specialists were needed yesterday. One of these tasks
is the independent preliminary diagnosis of patients in medicine. The ability to perform such diagnostics
allows you to reduce the time to identify problems with various diseases, in particular neurological
disorders, including cases such as a defect of fine motor skills, this allows you to reduce
the burden on medical specialists. It is worth noting that time plays a crucial role in the process of
providing medical care, and the timely provision of medical care can save a person's life. Thus,
the development of a solution that allows independent preliminary diagnosis of fine motor defects
by using technical tools that almost everyone has is an urgent task today. The aim of the work is to
expand the methods for diagnosing the presence of defects in fine motor skills. To achieve this
goal, the tasks were set to study the available solutions on the topic and develop a specialized algorithm intended for use in smartphones as part of a biomedical monitoring system. The article
presents an algorithm for determining the defects of fine motor skills of a person according to the
kinematic sensors of a smartphone – a three-axis accelerometer. The presented solution is based
on the analysis of the deviation angles obtained from the smartphone accelerometer when the
patient performs the assigned task (exercise). The task requires the patient to take a starting position
for three seconds and then hold the smartphone at arm's length for 10 seconds, during which
the readings of the three-axis accelerometer are measured. The test results of the solution showed
the accuracy of the solution at the level of 0.05 of the alpha error and 0.09 of the beta error. The
results obtained indicate the possibility of using the solution for preliminary self-diagnosis and
can be used as an element of the diagnostic module in large biomedical monitoring systems.

References

1. Axak N. Razrabotka mul'tiagentnoy sistemy neyrosetevoy diagnostiki i udalennogo monitoringa
patsienta [Development of a multi-agent system for neural network diagnostics and remote patient
monitoring], VEZhPT [East European Journal of Advanced Technologies], 2016, No. 9 (82). Available
at: https://cyberleninka.ru/article/n/razrabotka-multiagentnoy-sistemy-neyrosetevoydiagnostiki-
i-udalennogo-monitoringa-patsienta (accessed 22 April 2023).
2. A hand motion capture method based on infrared thermography for measuring fine motor skills in
biomedicine, ScienceDirect. Available at: https://www.sciencedirect.com/science/article/pii/
S0933365722002263 (accessed 08 April 2023).
3. Chandrasekaran V., Dantu R., Jonnada S., Thiyagaraja S., Subbu K. Cuffless Differential
Blood Pressure Estimation Using Smart Phones, IEEE Transactions on Biomedical Engineering,
2013, No. 60, pp. 1080-1089.
4. Image Classification Methods Applied in Immersive Environments for Fine Motor Skills
Training in Early Education, EBSCO. Available at: https://web.s.ebscohost.com/abstract?
site=ehost&scope=site&jrnl=19891660&AN=140078842&h=b9CK%2f78tXjJJg%2fm5DrFr6
Df07B%2brpUDwK4%2fI%2ftIx5aagyZ7wpshADB%2fgPhsVR6oZ%2bK3yBe%2bpaojg7A
rpC8KNWg%3d%3d&crl=c&resultLocal=ErrCrlNoResults&resultNs=Ehost&crlhashurl=logi
n.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26j
rnl%3d19891660%26AN%3d140078842 (accessed 30 April 2023).
5. Quantitative assessment of fine motor skills in children using magnetic sensors, ScienceDirect.
Available at: https://www.sciencedirect.com/science/article/abs/pii/S0387760420301108 (accessed
08 April 2023).
6. Sensors Overview, Developer Android. Available at: https://developer.android.com/
guide/topics/sensors/sensors_overview (accessed 08 April 2023).
7. Bogomolov A.I., Nevezhin V.P. Mobil'naya personal'naya meditsinskaya sistema dlya vyyavleniya
predvestnikov krizisa serdechno- sosudistoy sistemy [Mobile personal medical system
for identifying precursors of a crisis in the cardiovascular system], Khronoekonomika
[Chronoeconomics], 2018, No. 4 (12). Available at: https://cyberleninka.ru/article/
n/mobilnaya-personalnaya-meditsinskaya-sistema-dlya-vyyavleniya-predvestnikov-krizisaserdechno-
sosudistoy-sistemy (accessed 22 April 2023).
8. Blinova A.K., Dobrya M.Ya. Diagnostika razvitiya svyaznoy rechi i melkoy motoriki u detey
starshego doshkol'nogo vozrasta s obshchim nedorazvitiem rechi III urovnya [Diagnosis of the
development of coherent speech and fine motor skills in children of senior preschool age with
general speech underdevelopment of level III], Forum molodykh uchenykh [Forum of young
scientists], 2018, No. 6-1 (22). Available at: https://cyberleninka.ru/article/n/diagnostikarazvitiya-
svyaznoy-rechi-i-melkoy-motoriki-u-detey-starshego-doshkolnogo-vozrasta-sobschim-
nedorazvitiem-rechi-iii (accessed 30 April 2023).
9. But-Gusaim V.V., Yarosh A.S. Metody otsenki melkoy motoriki i sily kisti u patsientov s
tsentral'nymi i perifericheskimi parezami, vozmozhnosti ikh ispol'zovaniya [Methods for assessing
fine motor skills and hand strength in patients with central and peripheral paresis, the
possibilities of their use], Zhurnal GrGMU [Journal of GrSMU], 2017, No. 3. Available at:
https://cyberleninka.ru/article/n/metody-otsenki-melkoy-motoriki-i-sily-kisti-u-patsientov-stsentralnymi-
i-perifericheskimi-parezami-vozmozhnosti-ih-ispolzovaniya (accessed 29 September
2022).
10. Gaydina T.A., Dvornikova E.G. Effektivnost' ispol'zovaniya opticheskoy sistemy smartfona
dlya otsenki zlokachestvennosti melanotsitarnykh nevusov [The effectiveness of using the optical
system of a smartphone to assess the malignancy of melanocytic nevi], Vestnik RGMU
[Bulletin of the Russian State Medical University], 2020, No. 5. Available at:
https://cyberleninka.ru/article/n/effektivnost-ispolzovaniya-opticheskoy-sistemy-smartfonadlya-
otsenki-zlokachestvennosti-melanotsitarnyh-nevusov (accessed 22 April 2023).
11. Grishkina D.A. Otsenka stepeni razvitiya krupnoy motoriki u detey pervykh trekh let zhizni po
myunkhenskoy sisteme funktsional'noy diagnostiki razvitiya rebenka [Assessment of the degree of
development of gross motor skills in children of the first three years of life according to the Munich
system of functional diagnostics of child development], Kronos [Kronos], 2022, No. 4 (66). Available
at: https://cyberleninka.ru/article/n/otsenka-stepeni-razvitiya-krupnoy-motoriki-u-detey-pervyhtryoh-
let-zhizni-po-myunhenskoy-sisteme-funktsionalnoy-diagnostiki (accessed 10 October 2022).
12. Griffits D. Head First. Kotlin. Saint Petersburg: Piter, 2020, 464 p.
13. Kalinichenko A.V., Bortsov V.A., Simonov D.S., Kulikovskaya I.V., Romanenko M.Yu., Zulin Ya.V.
Organizatsiya sistemy distantsionnogo monitoringa patsientov v usloviyakh statsionara na domu
[Organization of a remote monitoring system for patients in a hospital setting at home],
Journal of Siberian Medical Sciences, 2013, No. 6. Available at: https://cyberleninka.ru/article/
n/organizatsiya-sistemy-distantsionnogo-monitoringa-patsientov-v-usloviyah-statsionara-na-domu
(accessed 01 May 2023).
14. Masleshov L.A. Razrabotka programmnoy sistemy dlya trenirovki dvigatel'noy aktivnosti i
identifikatsii zhestov melkoy motoriki ruk, schityvaemykh s perchatki virtual'noy real'nosti [Development
of a software system for training motor activity and identifying fine motor hand gestures
read from a virtual reality glove], Reshetnevskie chteniya [Reshetnev Readings], 2015, No. 19.
Available at: ttps://cyberleninka.ru/article/n/razrabotka-programmnoy-sistemy-dlya-trenirovkidvigatelnoy-
aktivnosti-i-identifikatsii-zhestov-melkoy-motoriki-ruk-schityvaemyh-s (accessed
20 September 2022).
15. Moxy – realizatsiya MVP pod Android s shchepotkoy magii [Moxy – MVP implementation
for Android with a pinch of magic], Habr. Available at: https://habr.com/ru/post/276189/ (accessed
11 September 2022).
16. Sal'nikova K.V. Analiz massiva dannykh s pomoshch'yu instrumenta vizualizatsii «yashchik s
usami» [Analysis of a data array using a “box with a mustache” visualization tool],
Universum: ekonomika i yurisprudentsiya [Universum: экономика и юриспруденция], 2021,
No. 6 (81). Available at: https://cyberleninka.ru/article/n/analiza-massiva-dannyh-spomoschyu-
instrumenta-vizualizatsii-yaschik-s-usami (accessed 10 October 2022).
17. Fedorovich A.A., Gorshkov A.Yu., Korolev A.I., Drapkina O.M. Smartfon v meditsine – ot
spravochnika k diagnosticheskoy sisteme. Obzor sovremennogo sostoyaniya voprosa
[Smartphone in medicine – from a reference book to a diagnostic system. Review of the current
state of the issue], KVTiP [Cardiovascular therapy and prevention], 2022, No. 9. Available
at: https://cyberleninka.ru/article/n/smartfon-v-meditsine-ot-spravochnika-k-diagnosticheskoysisteme-
obzor-sovremennogo-sostoyaniya-voprosa (accessed 17 April 2023).
18. Khamenyuk V. Android Architecture Comparison: MVP vs. VIPER, KB URN resolver. Available
at: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-80819 (accessed 11 September 2022).
19. Chakraborti D. Reactive Programming in Kotlin [Reactive Programming in Kotlin].
Birmingem: Packt Publishing, 2017, 299 p.
20. Shavlovskaya O.A. Sposob otsenki sostoyaniya dvigatel'noy funktsii kisti [Method for assessing the
state of motor function of the hand], Natsional'naya elektronnaya biblioteka [National Electronic
Library]. Available at: https://rusneb.ru/catalog/000224_000128_0002371088_20091027_C1_RU/
(accessed 08 April 2020).
Published
2023-10-23
Section
SECTION I. INFORMATION PROCESSING ALGORITHMS