ANALYSIS OF THE ELECTROMAGNETIC FIELD IN CABLE SYSTEMS WITH INSULATION FROM POLYMER MATERIALS

  • N. К. Poluyanovich Southern Federal University
  • D,V. Burkov Southern Federal University
  • М. N. Dubyago Southern Federal University
  • О. V. Kachelaev Southern Federal University
Keywords: Electric power equipment, polymer insulating materials, dielectric permeation, electric field strength distribution, non-destructive diagnostic methods, analysis

Abstract

The article is devoted to the calculation of the electromagnetic field strength (EMF) in the
insulating material of a power cable (SC). The magnetic field of a single sample of the APvPu-10
1x240/70 cable was investigated. Theoretical information is given for calculating the strength of
an electrostatic axisymmetric field based on the solution of Fredholm integral equations in a piecewise homogeneous linear polymer insulation with inclusions. Models are constructed for
calculating and analyzing the intensity distribution of inhomogeneous electric fields in a dielectric
medium with inclusions of different areas and with different electrophysical parameters (filling).
When the EMF passes through various materials filling the inclusion, the absorption of wave energy
by these substances is observed. Based on the simulation performed using the Comsol program,
the analysis of EMF at the interface of dielectric media between spherical micro-inclusion
and the main insulation was performed. It is shown that in solid dielectrics, conductors, EMF
absorption is significant. If a wave meets any conductor, then most of its energy is absorbed by it.
The presence of inhomogeneities in the insulation at the insulation – inhomogeneity interface
causes jumps in the electric field strength 1/2, 2/3. The simulation and analysis of the electric
field voltage distribution in the defect region were carried out and it was found that with increasing
Sdef, the amplitude of the magnetic induction surge (B) at the first boundary of the defect increases.
On the second border, the opposite is true. With increasing Sdef. the depth of the induction
failure (B) increases. However, while maintaining the overall picture, the values of dips with
different types of filling inclusions are different: – the greatest gradient is observed when filling
with water, the smallest when filling with carbon plus cross-linked polyethylene (C + SPE). Thus,
it can be a diagnostic parameter of the quality of the insulation of the IC. The results of the work
are of interest in solving a complex of problems related to various aspects of electromagnetic
compatibility and reliability of functioning of electric power systems.

References

1. Shcherba A.A., Shcherba M.A. Modelirovanie i analiz elektricheskogo polya v
dielektricheskoy srede, vozmushchennogo provodyashchimi mikrovklyucheniyami raznykh
razmerov i konfi-guratsiy [Modeling and analysis of an electric field in a dielectric medium
perturbed by conducting microinclusions of different sizes and configurations],
Tekhnicheskaya elektrodinamika [Technical Electrodynamics], 2010, No. 6, pp. 3-9.
2. Shcherba A.A., Peretyatko Yu.V., Zolotarev V.M. Modelirovanie elektricheskikh poley i
raschet ob"emov s kriticheskoy napryazhennost'yu v polimernoy izolyatsii vysokovol'tnykh
kabeley i SIP [Modeling of electric fields and calculation of volumes with critical tension in
polymer insulation of high-voltage cables and SIP], Tekhnicheskaya elektrodinamika [Technical
Electrodynamics], 2008, No. 2, pp. 113-119.
3. Shidlovskiy A.K., Shcherba A.A., Podol'tsev A.D., Kucheryavaya I.N., Zolotarev V.M.
Matematicheskaya model' i metodika chislennogo rascheta neodnorodnogo elektricheskogo
polya i nagreva polietilenovoy izolyatsii vysokovol'tnykh silovykh kabeley pri vozniknovenii
dendritnykh mikrokanalov [Mathematical model and method of numerical calculation of inhomogeneous
electric field and heating of polyethylene insulation of high-voltage power cables
in the occurrence of dendritic microchannels], Tekhnicheskaya elektrodinamika [Technical
Electrodynamics], 2006, No. 4, pp. 116-120.
4. Shcherba A.A., Peretyatko Yu.V. Modelirovanie neodnorodnykh elektricheskikh poley v
vysokovol'tnoy tverdoy polimernoy izolyatsii s geterogennymi mikrovklyucheniyami [Modeling
of inhomogeneous electric fields in high-voltage solid polymer insulation with heterogeneous
microinclusions], Vestnik natsional'nogo universiteta "L'vovskaya politekhnika" [Bulletin
of the National University "Lviv Polytechnic"], 2007, No. 597, pp. 123-129.
5. Besprozvannykh A.V., Kessaev A.G. Vychislitel'nye eksperimenty dlya rascheta
napryazhennosti osesimmetrichnogo elektrostaticheskogo polya v kusochno-odnorodnoy
izolyatsii so sfericheskimi vklyucheniyami [Computational experiments for calculating
the strength of an axisymmetric electrostatic field in piecewise homogeneous insulation
with spherical inclusions], Elektrotekhnika i elektromekhanika [Electrotechnics and
Electromechanics], 2014, No. 5, pp. 67-72.
6. Tozoni O.V. Metod vtorichnykh istochnikov v elektrotekhnike [Method of secondary sources
in electrical engineering]. Moscow: Energiya, 1975, 295 p.
7. Naboka B.G. Raschety elektrostaticheskikh poley v elektroizolyatsionnoy tekhnike: ucheb.
posobie dlya studentov elektroenergeticheskikh spetsial'nostey [Calculations of electrostatic
fields in electrical insulation technology: a textbook for students of electric power specialties].
K.: ISDO, 1995, 120 p.
8. Poluyanovich N.K., Tibeyko I.A. Ekspluatatsiya i remont sistem elektrosnabzheniya
promyshlennykh predpriyatiy [Operation and repair of power supply systems of industrial enterprises].
Taganrog: YuFU, 2014.
9. Dubyago M.N., Poluyanovich N.K. Sovershenstvovanie metodov diagnostiki i
prognozirovaniya elektroizolyatsionnykh materialov sistem energosnabzheniya: monografiya
[Improvement of methods of diagnostics and forecasting of electrical insulation materials of
power supply systems: monograph]. Rostov-on-Don; Taganrog: Izd-vo YuFU, 2019, 192 p.
10. Dubyago M.N., Poluyanovich N.K. Metod selektsii signala ChR s pomoshch'yu Veyvletpreobrazovaniya
[Method of selection of the CR signal using the Wavelet transform],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 2
(139), pp. 99-104.
11. Poluyanovich N.K., Burkov D.V., Dubyago M.N., Shurykin A.A., Kosenko E.Y. The influence
of the electro-magnetic field on the neural network monitoring of insulation materials for electric
cable networks, International Conference on Electrical, Computer, Communications and
Mechatronics Engineering, ICECCME 2021, pp. 9590839.
12. León F., Anders G.J. Effects of Backfilling on Cable Ampacity Analyzed With the Finite Element
Method, IEEE Transactions on Power Delivery, 2008, Vol. 23, No. 2, pp. 537-543.
13. Li H.J. Estimation of Soil Thermal Parameters from Surface Temperature of Underground
Cables and Predic-tion of Cable Rating, IEEE Proc. Gener. Transm. Distrib., 2005, Vol. 152,
No. 6, pp. 849-854.
14. Poluyanovich N.K., Dubyago M.N. Prognozirovanie resursa kabel'nykh liniy s ispol'zovaniem
metoda iskusstvennykh neyronnykh setey [Forecasting the resource of cable lines using the
method of artificial neural networks], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU.
Engineering Sciences], 2019, No. 3 (205), pp. 51-62.
15. Dubyago M.N., Poluyanovich N.K. Pshikhopov V.Kh. Otsenka i prognozirovanie
izolyatsionnykh materialov silovykh kabel'nykh liniy [Evaluation and forecasting of insulating
materials of power cable lines], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2015, No. 7 (168), pp. 230-237.
16. Poluyanovich N.K., Shurykin A.A., Dubyago M.N. Evaluation of the Cable Line Resource from
the Aaging Degree of Its Insulating Material, Proceedings - 2021 3rd International Conference
on Control Systems, Mathematical Modeling, Automation and Energy Efficiency,
SUMMA 2021, 2021, pp. 1165-1169.
17. Poluyanovich N.K., Dubyago M.N. Analiz i vybor metodiki v reshenii zadach
intellektualizatsii sistem prognozirovaniya termofluktuatsionnykh protsessov v kabel'nykh
setyakh [Analysis and choice of methodology in solving the problems of intellectualization of
forecasting systems of thermal fluctuation processes in cable networks], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2020, No. 2 (212), pp. 52-66.
18. Poluyanovich N.K., Dubyago M.N., Azarov N.V., Ogrenichev A.V. Neyrosetevoy metod v
zada-chakh prognozirovaniya elektropotrebleniya v elektroenergeticheskoy sisteme [Neural
network method in the tasks of forecasting electricity consumption in the electric power system],
Matematicheskie metody v tekhnologiyakh i tekhnike [Mathematical methods in technology
and engineering], 2022, No. 1, pp. 114-118.
19. Anders G.J., Napieralski A., Orlikowski M., Zubert M. Advanced Modeling Techniques for
Dynamic Feeder Rating Systems, IEEE Transactions on Industry Applications, 2003, Vol. 39,
No. 3, pp. 619-626.
20. Anders G.J. Rating of Cables on Riser Poles, in Trays, in Tunnels and Shafts - a Review, IEEE
Transactions on Power Delivery, 1996, Vol. 11, No. 1, pp. 3-11.
21. Poluyanovich N.K., Dubyago M.N., Bur'kov D.V. Neyrosetevaya mnogoetapnaya sistema
prognozirovaniya resursa silovoy kabel'noy linii [Neural network multi-stage system for predicting
the power cable line resource], Matematicheskie metody v tekhnologiyakh i tekhnike
[Mathematical methods in technology and engineering], 2021, No. 11, pp. 20-26.
22. Poluyanovich N., Azarov N., Dubyago M. Neural network method for monitoring
thermofluctuation processes in cable lines taking into account the interference influence, Conference
Proceedings - 2021 Radiation and Scattering of Electromagnetic Waves, RSEMW
2021, 2021, pp. 455-459.
23. Polyakov D.A. Monitoring ostatochnogo resursa izolyatsii kabel'nykh liniy 6(10) kV iz
sshitogo polietilena: diss. … kanl. tekh. nauk [Monitoring of the residual insulation life of
6(10) kV cable lines made of cross-linked polyethylene: cand. of eng. sc. diss.]. Omsk, 2017,
148 p.
Published
2023-08-14
Section
SECTION IV. ELECTRONICS, NANOTECHNOLOGY AND INSTRUMENTATION