THRESHOLD ASSESSMENT OF THE STATE OF A TECHNICAL OBJECT BASED ON SEGMENTATION AND IDENTIFICATION OF THE CONTROLLED PARAMETER MODEL

  • S.I. Klevtsov Southern Federal University
Keywords: Model, likelihood criterion, signal jump, detection, acceleration, object

Abstract

To fix the jumps in the average value, a detection method based on the segmentation of the signal
under study based on the formation of cumulative sums using the Page-Hinckley criterion is proposed.
The use of the Page–Hinckley likelihood criterion makes it possible to detect abrupt changes
in the average value of the controlled object parameter in real time under noisy conditions. When
using the method, it is assumed that the signal is described by a time series of values of the signal
under study. From this series, it is possible to single out separate successive sections, which can be
considered as some signal models limited in time. The method is based on the use of criterion statistics,
on the basis of which two or three models estimated from different parts of the signal are compared,
which makes it possible to detect abrupt changes in the model parameters. The method assumes
that a piecewise constant signal with additive noise is considered. At arbitrary moments of
time, there are jumps in the average value of this signal. Jumps in the average value of the signal can
be different in sign (fixed on different sides of the time axis) and significantly exceed the original
value in absolute value. The average value of the signal is a constant value close to zero. But a situation
is possible when a repeated jump will be made from a level different from the average value
close to zero, both in the direction of increasing and decreasing the average value of the signal and
changing the signal polarity (the sign of the signal values). A criterion has been chosen that allows
minimizing the delay time in detecting a jump in the average value of the recorded signal with a minimum
of false alarms. In this case, segmentation of the signal under study is used based on the formation
of cumulative sums using the Page-Hinckley criterion. The use of the Page–Hinckley likelihood
criterion makes it possible to detect abrupt changes in the average value of the controlled object
parameter in real time under noisy conditions.

References

1. Bushmeleva K.I., Plyusnin I.I., Bushmelev P.E., Uvaysov S.U. Raspredelennaya besprovodnaya
sistema monitoringa tekhnicheskogo sostoyaniya ob"ektov gazotransportnoy seti [Distributed
wireless system for monitoring the technical condition of gas transmission network facilities],
Izmeritel'naya tekhnika [Measuring equipment], 2013, No. 3, pp. 7-10.
2. Vinogradenko A.M., Kuznetsov A.V. Sistema monitoringa tekhnicheskogo sostoyaniya
podvizhnykh ob"ektov [Monitoring system of the technical condition of mobile objects],
Tekhnika sredstv svyazi [Communication equipment], 2018, No. 2 (142), pp. 103-108.
3. Vinogradenko A.M. Modelirovanie sistem monitoringa tekhnicheskogo sostoyaniya slozhnykh
tekhnicheskikh ob"ektov na osnove metodov teorii entropiynykh potentsialov [Modeling of
systems for monitoring the technical condition of complex technical objects based on the
methods of the theory of entropy potentials], Tekhnika sredstv svyazi [Communication equipment],
2019, No. 2 (146), pp. 71-78.
4. Bukhtoyarov V.V. Issledovanie metodov prognozirovaniya parametrov tekhnicheskogo
sostoyaniya ob"ektov pri monitoringe i diagnostike [Research of methods of forecasting parameters
of the technical condition of objects during monitoring and diagnostics], Nauka i biznes: puti
razvitiya [Science and business: ways of development], 2020, No. 12 (114), pp. 20-22.
5. Shcherbatov I.A., Dolgushev A.N., Belov M.K., Agibalov V.A., Salov I.V. Otsenka tekhnicheskogo
sostoyaniya oborudovaniya teplovoy stantsii na primere kondensatora [Assessment of the technical
condition of the equipment of a thermal station on the example of a condenser], International
Journal of Open Information Technologies, 2023, Vol. 11, No. 3, pp. 45-49.
6. Protalinsky O.M., Shcherbatov I.A., Stepanov P.V. Identification of the actual state and entity
availability forecasting in power engineering using neural-network technologies, Journal of
Physics: Conference Series. IOP Publishing, 2017, Vol. 891, No. 1, pp. 012289.
7. Kan O.A. Organizatsiya adaptivnogo oprosa datchikov v avtomatizirovannoy sisteme gazovogo
kontrolya [Organization of adaptive survey of sensors in an automated gas control system],
Avtomatika i informatika [Automation and computer science], 2002, No. 1-2, pp. 32-33.
8. Sadhukha. Change detection algorithms. From ttp://www.research.rutgers.edu/~sadhukha/
file2.pdf.
9. Kan O.A., Zharkimbekova A.T., Kadirova Zh.B., Zhaksybaeva S.R., Zholmagambetova B.R.
Obnaruzhenie otkloneniy parametrov tekhnologicheskogo protsessa v kontroliruemom ob"ekte
[Detection of deviations of technological process parameters in a controlled object],
Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy [International Journal
of Applied and Fundamental Research], 2015, No. 5-2, pp. 186-189.
10. Ross G.J., Adams N.M., Tasoulis D.K., & Hand D.J. Exponentially Weighted Moving Average
Charts for Detecting Concept Drift, Pattern Recognition Letters, 2012, 33 (2), pp. 191-198.
DOI: 10.1016/j.patrec.2011.08.019.
11. Raza H., Prasad G., and Li Y. Ewma model based shift-detection methods for detecting covariate
shifts in non-stationary environments, Pattern Recognition, 2015, 48 (3), pp. 659-669.
Available at: https://doi.org/10.1016/j.patcog.2014.07.028.
12. Barddal J.P., Gomes H.M., Enembreck F., Pfahringer B., & Bifet A. On dynamic feature
weighting for feature drifting data streams, In P. Frasconi, N. Landwehr, G. Manco, &
J. Vreeken (Eds.), Proceedings of European Conference on Machine Learning and Knowledge
Discovery in Databases, 2016, Vol. LNAI 9852, pp. 129-144. Cham, Switzerland: Springer.
Available at: https://doi.org/10.1007/978-3-319-46227-1_9.
13. Koroleva M.N., Burdo G.B. On ontological modeling of measurements in a complex monitoring
system of technical object, Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual'nykh system [Open semantic technologies for designing intelligent systems], 2019,
No. 3, pp. 243-246.
14. Klevtsov S.I. Prognozirovanie izmereniya sostoyaniya parametrov tekhnicheskogo ob"ekta s
pomoshch'yu intellektual'nogo mikroprotsessornogo modulya [Predicting the measurement of
the state of parameters of a technical object using an intelligent microprocessor module],
Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh system – 2010: Sb. nauchnykh
trudov [Problems of development of promising micro- and nanoelectronic systems – 2010:
Collection of scientific papers]. Moscow: IPPM RAN, 2010, pp. 619-622.
15. Klevtsov S.I. Razrabotka modeli i algoritma otslezhivaniya izmeneniya sostoyaniya
tekhnicheskogo ob"ekta na osnove modifitsirovannoy neyronnoy seti Khemminga [Development
of a model and algorithm for tracking changes in the state of a technical object based on
a modified Hamming neural network], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU.
Engineering Sciences], 2014, No. 11, pp. 42-52.
16. Obnaruzhenie izmeneniya svoystv signalov i dinamicheskikh system [Detection of changes in
the properties of signals and dynamic systems]: transl. from engl. by M. Bassvil', A. Vilski,
A. Banvenist i dr., ed. by M. Bassvil' i A. Banvenista. Moscow: Mir, 1989, 278 p.
17. Shiryaev A.N. Zadacha skoreyshego obnaruzheniya narusheniya statsionarnogo rezhima [The
task of early detection of a violation of the stationary regime], Doklady AN SSSR [Reports of
the USSR Academy of Sciences], 1961, Vol. 138, No. 5, pp. 1039-1042.
18. Klevtsov S.I. Opredelenie momenta skachkoobraznogo izmeneniya bystroperemennoy
fizicheskoy velichiny v real'nom vremeni s ispol'zovaniem diagramm Puankare [Determination
of the moment of an abrupt change in a rapidly variable physical quantity in real time using
Poincare diagrams], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences],
2012, No. 5, pp. 108-113.
19. Hinkley D.V. Inference about the Change-Point from Cumulative Sum-Tests, Biometrika,
1971, 508, 3, pp. 509-523.
20. Mouss H., Mouss D., Mouss N., & Sefouhi L. Test of Page-Hinkley, an approach for fault detection
in an agro-alimentary production system, In Proceedings of the Asian control conference,
2004, Vol. 2, pp. 815-818. DOI: 10.1109/ASCC.2004.184970.
21. Basseville M. and Nikiforov I.V. Detection of Abrupt Changes: Theory and Application. PTR
Prentice-Hall, Inc., Englewood Cliffs. 1993, 469 р.
22. Romanenko A.F., Sergeev G.A. Voprosy prikladnogo analiza sluchaynykh protsessov [Questions
of applied analysis of random processes]. Moscow: Izd-vo «Sovetskoe radio», 1968, 256 p.
Published
2023-08-14
Section
SECTION III. MODELING OF PROCESSES AND SYSTEMS