DECISION SUPPORT FOR PREVENTION AND ELIMINATION OF THE EMERGENCIES’ CONSEQUENCES BASED ON THE INFORMATION STRUCTURING FUZZY METHOD

  • Е.М. Gerasimenko Southern Federal University
  • D.Y. Kravchenko Southern Federal University
  • Y.А. Kravchenko Southern Federal University
  • E.V. Kuliev Southern Federal University
Keywords: Emergencies, decision support, fuzzy rules, ontologies, classification

Abstract

The article is devoted to solving the scientific problem of decision support for the prevention
and elimination of emergencies’ consequences based on solving the problem of structuring information.
The relevance of this task is due to the need to develop theoretical foundations for optimizing
the risk of adverse effects on human health and the environment in connection with emergencies.
The authors give definitions to the main terms of the studied subject area. A formalized
statement of the problem to be solved is presented. A detailed emergencies’ classification with a
description of the presented classes’ features is given. The system of rules for decision support in
emergencies should have a multi-level hierarchy, which allows for the construction of variousdecision-making trajectories on a top-down basis. The most suitable model for building such an information
space is an ontological structure that provides the creation of the necessary multi-level
hierarchy, taking into account all the parameters and criteria that affect the development of the situation.
The main elements of this ontological model are entities and relationships between them, the
presence of which at the upper level of decomposition will indicate the risk of an emergency, and at
each lower level it will expand the taxonomy of a detailed description of emergencies’ possible situations
and the necessary actions to prevent or eliminate them consequences. The processing of this
ontological model of rules is implemented on the basis of the structuring information fuzzy method
proposed by the authors in emergencies, which differs from known analogs by the use of a new generalized
criterion for optimizing the choice of decision support alternatives. The originality of the
optimization formulation of the structuring problem lies in the assessment of the information elements
contextual binding to a certain class of emergency situations, interdisciplinary, taking into account
the presence of many links between subject areas, as well as taking into account the decrease in the
level of information efficiency about the course of emergencies over time.

References

1. Gosudarstvennyy doklad o sostoyanii zashchity naseleniya i territoriy Rossiyskoy Federatsii ot
chrezvychaynykh situatsiy prirodnogo i tekhnogennogo kharaktera v 2014 godu [State report
on the state of protection of the population and territories of the Russian Federation from natural
and man–made emergencies in 2014]. Moscow: MChS Rossii, 2015, 318 p.
2. Sovremennye sistemy monitoringa i prognozirovaniya chrezvychaynykh situatsiy [Modern
systems of monitoring and forecasting of emergency situations], under the general ed. of
V.A. Puchkova. Moscow: FKU TsSI GZ MChS Rossii, 2013, 352 p.
3. Bolov V.R. Primenenie sovremennykh tekhnologiy, metodov monitoringa i prognozirovaniya v
obespechenii sistemy upravleniya v krizisnykh situatsiyakh [Application of modern technologies,
methods of monitoring and forecasting in providing a management system in crisis situations],
Zhurnal-katalog «Sredstva spaseniya. Protivopozharnaya zashchita. Rossiyskie
innovatsionnye sistemy» [Journal-catalog "Means of rescue. Fire protection. Russian Innovation
Systems"], 2010, No. 10.
4. Isaev, V.S., Makiev, Yu.D., Malyshev, V.P., Taranov, A.A., Kamzolkin, V.L. Metodika otsenki
effektivnosti meropriyatiy po povysheniyu ustoychivosti funktsionirovaniya kriticheski vazhnykh
ob"ektov i ob"ektov zhizneobespecheniya v usloviyakh ugroz terroristicheskogo kharaktera [Methodology
for assessing the effectiveness of measures to improve the stability of the functioning of
critical facilities and life support facilities in the face of terrorist threats], Informatsionnyy sbornik
[Information collection]. Moscow: TsSI GZ MChS Rossii, 2010, No. 42, pp. 52-68.
5. Gorbunov, S.V., Makiev, Yu.D., Malyshev, V.P. Analiz tekhnologiy prognozirovaniya
chrezvychaynykh situatsiy prirodnogo i tekhnogennogo kharaktera [Analysis of technologies
for forecasting natural and man-made emergencies], Strategiya grazhdanskoy bezopasnosti,
problemy i resheniya: Nauch.-analit. sb. [Strategy of civil security, problems and solutions:
Scientific and analytical collection]. Moscow: 2011, Vol. 1, No. 1 (1), pp. 43-53.
6. Kravchenko Yu.A. Model' strukturizatsii znaniy na osnove otsenki nalichiya sushchestvennykh
priznakov [A model of knowledge structuring based on the assessment of the presence of essential
features], Tr. Kongressa po intellektual'nym sistemam i informatsionnym
tekhnologiyam «IS&IT’15» [Proceedings of the Congress on Intelligent Systems and Information
Technologies "IS&IT'15"]. Scientific publication in 3 vol. Vol. 1, 2015, pp. 293-298.
7. Varshavskiy P.R., A.P. Eremeev, Kurilenko I.E. Modelirovanie vremennykh zavisimostey v
intellektual'nykh sistemakh podderzhki prinyatiya resheniy na osnove pretsedentov [Modeling of time
dependencies in intelligent decision support systems based on precedents], Information technologies
and knowledge [nformation technologies and knowledge], 2012, Vol. 6, No. 3, pp. 227-239.
8. Bova, V.V., Kureychik V.V., Leshchanov D.V. Model' semanticheskogo poiska v sistemakh
upravleniya znaniyami na osnove geneticheskikh protsedur [Semantic search model in
knowledge management systems based on genetic procedures], Informatsionnye tekhnologii
[Information Technologies], 2017, Vol. 23, No. 12, pp. 876-883.
9. Chen C., Koufaris M. The Impact of Decision Support System Features on User Overconfidence
and Risky Behavior, Nature Publishing Group, 2014, No. 4, pp. 1-17.
10. Larichev O.I. Verbal'nyy analiz resheniy [Verbal analysis of decisions]. Moscow: Nauka,
2006, 181 p.
11. Kaplunov T.G., Kureychik V.M. Adaptivnyy geneticheskiy algoritm na osnove nechetkikh
pravil [Adaptive genetic algorithm based on fuzzy rules], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2018, No. 5 (199), pp. 26-34.
12. Arenas M., Botoeva E., Calvanese D., Ryzhikov V. Exchanging OWL 2 QL Knowledge Bases,
23rd International Joint Conference on Artificial Intelligence, 2013, pp. 703-710.
13. Fedorov D.Yu. Primenenie strukturizatsii znaniy dlya obespecheniya informatsionnoy
bezopasnosti lichnosti [Application of knowledge structuring to ensure the information security
of the individual], Natsional'naya bezopasnost' i strategicheskoe planirovanie [National security
and strategic planning], 2013, No. 2, pp. 40-43.
14. Kravchenko Yu.A. Tekhnologii upravleniya znaniyami kak osnova podderzhki prinyatiya
resheniy [Технологии управления знаниями как основа поддержки принятия решений],
Tr. Kongressa po intellektual'nym sistemam i informatsionnym tekhnologiyam «IS&IT’14»
[Proceedings of the Congress on Intelligent Systems and Information Technologies
"IS&IT'14"]. Scientific publication in 4 vol. Vol. 1, 2014, pp. 151-157.
15. Hecker A. Knowledge Beyond the Individual. Making Sense of a Notion of Collective
Knowledge in Organization Theory, Organization Studies, 2012, Vol. 33, pp. 423-445.
16. Bova V.V., Kureichik V.V., Nuzhnov E.V. The Combined Method of Semantic Similarity Estimation
of Problem Oriented Knowledge on the Basis of Evolutionary Procedures, Artificial Intelligence
Trends in Intelligent Systems, 2015, pp. 74-83.
17. Rodzin S., Rodzina L. Theory of Bioinspired Search for Optimal Solutions and its Application
for the Processing of Problem-Oriented Knowledge, 8th IEEE International Conference on
Application of Information and Communication Technologies, 2014, pp. 142-147.
18. Dolinina O., Suchkova N. Formal Models of the Structural Errors in the Knowledge Bases of
Intellectual Decision Making Systems, Artificial Intelligence Trends in Intelligent Systems,
2015, pp. 156-167.
19. Jensen J. A Systematic Literature Review of the Use of Semantic Web Technologies in Formal
Education, Br. J. Edu. Technol., 2019, Vol. 50, pp. 505-517.
20. Gulyakina N.A., Davydenko I.T. Semanticheskie modeli i metod soglasovannoy razrabotki baz
znaniy [Semantic models and the method of coordinated development of knowledge bases],
Programmnye produkty i sistemy [Software products and systems], 2020, No. 3, pp. 420-429.
21. Shalimov P.Yu. Modeli kolichestvennoy shkaly otsenki semanticheskoy informatsii [Models of
the quantitative scale of semantic information evaluation], Avtomatizatsiya i modelirovanie v
proektirovanii i upravlenii [Automation and modeling in design and management], 2020,
No. 2 (8), pp. 24-32.
22. Greger S.E., Porshnev S.V. Metod ob"ektno-orientirovannogo predstavleniya mnogourovnevykh
semanticheskikh modeley [The method of object-oriented representation of multilevel semantic
models], Cloud of Science, 2016, Vol. 3, No. 4, pp. 548-561.
23. Shevchenko E.L. Metrika blizosti semanticheskikh annotatsiy dlya zadachi sravneniya profiley
protsessov [The proximity metric of semantic annotations for the task of comparing process
profiles], Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy [Eastern European Journal
of Advanced Technologies], 2013, Vol. 3, No. 2 (63), pp. 48-52.
Published
2023-06-07
Section
SECTION III. INFORMATION PROCESSING ALGORITHMS