MANUFACTURING TECHNOLOGY OF PRESSURE SENSOR’S SENSITIVE ELEMENTS BASED ON “SAPPHIRE – VITERIOUS DIELECTRIC – CERAMIC” JUNCTION

  • S.P. Malyukov Southern Federal University
  • V.D. Mishnev Southern Federal University
Keywords: Pressure sensor, pressure-sensing element, silicon on sapphire, thermal soldering

Abstract

Today pressure transmitters have high requirements such as reliability, quality, measurement
accuracy, the ability to work in extreme conditions and resistance to aggressive environments.
The main problems in achieving these target indicators are: the high cost of the original
products, the laboriousness of the technological process in serial production, and the limitations
that affect the accuracy of the indicators of the original devices. Solving these problems is the
subject of this article. To solve these problems and improve the physical and mechanical properties
of pressure sensor’s sensitive elements, the following tasks are considered in the article: development
of a pressure-sensing element design based on the silicon-on-sapphire (SOS) structureresearch on the method of its connection with a ceramic body element and development of a technological
route for manufacturing the structure based on “sapphire – vitreous dielectric – ceramic”
junction. As a result, the pressure sensor based on the SOS structure has high sensitivity,
stability, practically no mechanical hysteresis, and can operate in a wide temperature range from
-60 to +350°C when exposed to radiation. In turn, the use of a ceramic base makes it possible to
reduce the temperature error of the sensor due to better matching of the coefficient of linear thermal
expansion (CLTE) of ceramic (85–100×10-7 K-1) and sapphire substrate (60–75×10-7 K-1), as
well as reduce the cost of the technological process due to the use of ceramics instead of expensive
titanium alloys and complex metalworking. Thus, the structure "sapphire – vitreous dielectric –
ceramic" shows the possibility of increasing the sensitivity of the sensor and reducing the error
while expanding its functionality, simplifying the design and improving manufacturability

References

1. Skvortsov P.A. Razrabotka metodiki rascheta i proektirovaniya uprugogo elementa
tenzodatchika na strukture «kremniy na sapfire»: diss. … kand. tekh. Nauk [Development of a
method for calculating and designing an elastic element of a strain gauge on the structure "silicon
on sapphire": cand. of eng. sc. diss.]: 01.02.06. Moscow: Moskovskiy politekhnicheskiy
universitet, 2019.
2. Khoshev A.V. Tenzorezistivnye plenki i ikh primenenie v datchikakh davleniya [Tensoresistive
thin films and their use in pressure sensors], Sovremennaya tekhnika i tekhnologii [Modern
technics and technologies], 2014, No. 10.
3. Mikhaylov P.G., Mokrov E.A., Sergeev D.A., Skotnikov V.V., Petrin V.A., Chernetsov M.A.
Chuvstvitel'nye elementy vysokotemperaturnykh datchikov davleniya. Materialy i tekhnologii
izgotovleniya [Sensitive elements of high- pressure sensors. Materials and technologies
izgogovleniya], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences],
2014, No. 4 (153), pp. 204-213.
4. Ustinov A.A., Nagornov Yu.S., Kozlov A.I. Sravnitel'nye kharakteristiki odnosloynykh i
dvukhsloynykh tenzopreobrazovateley davleniya na osnove struktur kremniy–na–sapfire [Comparative
characteristics of single-layer and double-layer pressure transducers based on silicon-onsapphire
structures], Izvestiya vysshikh uchebnykh zavedeniy. Materialy elektronnoy tekhniki
[Izvestiya vysshykh uchebnykh zavedeniy. Materialy electronnoy tekhniki], 2012, No. 1, pp. 66-67.
5. Konovalov R.S., L'vov A.A. Vysokotemperaturnye datchiki davleniya [High temperature pressure
sensors], Tr. mezhdunarodnogo simpoziuma "Nadezhnost' i kachestvo" [International
Sympozium "Reliability and quality"], 2014, Vol. 2, pp. 48-50.
6. Gurin S.A., Pecherskaya E.A., Zinchenko T.O., Fimin A.V., Nikolaev K.O. Konstruktsii i
tekhnologicheskie rezhimy formirovaniya chuvstvitel'nykh elementov mikroelektronnykh
datchikov bystroperemennogo i staticheskogo davleniya [Structures and technological regimes
of forming sensitive elements of microelectronic sensors of fast alternating and static pressure],
Izmerenie. Monitoring. Upravlenie. Kontrol' [Measuring. Monitoring. Management.
Control], 2019, No. 3 (29), pp. 111-118.
7. Mikhaylov P.G., Smogunov V.V., Vol'nikov M.I. Tekhnologii formirovaniya geterostruktur
izmeritel'nykh preobrazovateley [Technologies for heterostruktures formation of transducer],
Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskie nauki [University
proceedings. Volga region. Technical sciences], 2020, No. 3 (55), pp. 58-67.
8. Shokorov V.A., Smirnov I.I. Razrabotka i primenenie vysokotemperaturnykh datchikov
davleniya dlya reaktivnykh dvigateley raketno-kosmicheskoy tekhniki [Development and application
of high-temperature pressure sensors for jet engines of rocket and space technology],
Tr. mezhdunarodnogo simpoziuma "Nadezhnost' i kachestvo" [International Sympozium "Reliability
and quality"], 2018, Vol. 2, pp. 60-62.
9. Berlin E.V., Seydman L.A. Poluchenie tonkikh plenok reaktivnym magnetronnym raspyleniem
[Preparation of thin films by reactive magnetron sputtering]. 2nd ed., corr. and suppl. URSS,
2022, 316 p. ISBN 978-5-9710-9680-1.
10. Vasil'ev V.A., Khoshev A.V. Primenenie magnetronnogo raspyleniya dlya polucheniya tonkikh
plenok geterogennykh struktur nano- i mikroelektromekhanicheskikh sistem [Application of
magnetron sputtering to obtain thin films of heterogeneous structures of nano- and
microelectromechanical systems], Fundamental'nye problemy radioelektronnogo
priborostroeniya [Fundamental problems of radio-electronic instrumentation], 2014, Vol. 14,
No. 3, pp. 144-147.
11. Goncarov E, Saaenko A., Malyukov S., Palii A. Formation of ITO Thin Films by MF Magnetron
Sputtering for Solar Cells Application, Processing of ITNT 2021 – 7th IEEE International
Conference on Information Technology and Nanotechnology, 2021.
12. Danilina T.I., Troyan P.E., Sakharov Yu.V., Zhidik Yu.S. Ionno-plazmennye metody polucheniya
nanostruktur [Ion-plasma methods to obtain nanostructures], Doklady Tomskogo
gosudarstvennogo universiteta sistem upravleniya i radioelektroniki [Proceedings of TUSUR
University], 2017, Vol. 20, No. 3, pp. 40-45.
13. Kolobov N.A., Shelegeda E.V. Issledovanie poperechnoy provodimosti plenok
polikristallicheskogo kremniya, poluchennykh metodom magnetronnogo raspyleniya [Investigation
of the transverse conductivity of polycrystalline silicon films obtained by magnetron
sputtering], Kratkie soobshcheniya po fizike FIAN [Bulletin of the Lebedev Physics Institute],
2012, No. 5, pp. 28-37.
14. Klimovich I.M., Romanov I.A., Komarov F.F., Zaykov V.A., Vlasukova L.A, Osin Yu.N., Rogov
A.M., Vorob'ev V.V., Stepanov A.L. Osobennosti formirovaniya tonkikh plenok kremniya,
osazhdaemykh magnetronnym raspyleniem [Features of formation of thin silicon coatings deposited
by magnetron sputtering], Doklady Natsional'noy akademii nauk Belarusi [Doklady of
the National Academy of Sciences of Belarus], 2017, Vol. 61, No. 6, pp. 35-41.
15. Volochko A.T, Zelenin V.A., Mel'nik N.Yu. Splavy sistemy Cr-Ni-Si dlya polucheniya
rezistivnykh elementov integral'nykh mikroskhem metodom magnetronnogo raspyleniya [Alloys
of the Cr–Ni–Si system for obtaining resistive elements of integrated microcircuits by
magnetron sputtering], Izvestiya Natsional'noy akademii nauk Belarusi. Seriya fizikotekhnicheskikh
nauk [Proceedings of the National Academy of Sciences of Belarus. Physicaltechnical
series], 2020, Vol. 65, No. 1, pp. 35-42.
16. Velichko A.A., Ilyushin V.A., Filimonova N.I., Krupin A.Yu., Katsyuba A.V. Tenzorezistory na
strukturakh "kremniy na sapfire" (KNS) i Si/CaF2/Si [Tenzoresistors based on silicon and
Si/CaF2/Si on sapphire structures], Doklady Akademii nauk vysshey shkoly Rossiyskoy
Federatsii [Proceedings of the Russian Higher School Academy of Sciences], 2018, No. 2
(39), pp. 30-39.
17. Lapin A.P., Gayfulin N.M., Suleymanova L.N., Yunusova G.R. Metodika izucheniya
fizicheskikh effektov, ispol'zuemykh dlya izmereniya davleniya [Method of Studying Physical
Effects and Phenomena in the Measurement of Pressure], Vestnik Yuzhno-Ural'skogo
gosudarstvennogo universiteta. Seriya: Komp'yuternye tekhnologii, upravlenie, radioelektronika
[Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic
Control, Radio Electronics], 2019, Vol. 19, No. 1, pp. 160-168.
18. Komolikov Yu.I., Kashcheev I.D., Khrustov V.R. Termicheskoe rasshirenie kompozitsionnoy
keramiki sistemy dioksid tsirkoniya ‒ oksid alyuminiya [Thermal expansion of composite ceramics
of the system zirconium dioxide – aluminum oxide], Novye ogneupory [Novye
ogneupory], 2016, No. 9, pp. 59-62.
19. Stuchebnikov V.M., Ustinov A.A., Nagornov Yu.S. Issledovanie temperaturnogo dreyfa i
nelineynostey tenzopreobrazovateley davleniya na osnove keramiki [Study of temperature drift
and nonlinearities of pressure strain gauges based on ceramics], Izvestiya vysshikh uchebnykh
zavedeniy. Povolzhskiy region. Tekhnicheskie nauki [University proceedings. Volga region.
Technical sciences], 2010, No. 2 (14), pp. 62-69.
20. Sokolov. V.I. Tsentrifugirovanie [Centrifugation]. Moscow: Khimiya, 1976, 408 p.
21. Panfilova E.V., Grishaev N.A. Otrabotka i issledovanie protsessa polucheniya fotonnokristallicheskikh
plenok metodom tsentrifugirovaniya [Development and study of the process
of photonic-crystal film depositing by centrifugation], Inzhenernyy zhurnal: nauka i innovatsii
[Engineering Journal: Science and Innovation], 2021, No. 4 (112).
22. Klunnikova Yu.V., Bondarchuk D.A. Formirovanie spaya steklovidnogo dielektrika i sapfira
dlya elementov mikroelektroniki [Junction formation of glassy dielectric and sapphire for microelectronic
elements], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2018, pp. 67-73.
Published
2023-06-07
Section
SECTION II. ELECTRONICS, NANOTECHNOLOGY AND INSTRUMENTATION