AUTONOMOUS ROBOT FOR MONITORING GROUND ARCHAEOLOGICAL SITES

  • К.C. Bzhikhatlov Federal public budgetary scientific establishment «Federal scientific center «Kabardin-Balkar Scientific Center of the Russian Academy of Sciences»;
  • А.U. Zammoev Federal public budgetary scientific establishment «Federal scientific center «Kabardin-Balkar Scientific Center of the Russian Academy of Sciences»
  • L.B. Kokova Federal public budgetary scientific establishment «Federal scientific center «Kabardin-Balkar Scientific Center of the Russian Academy of Sciences»
  • I.А. Pshenokova Institute of Computer Science and Problems of Regional Management, Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
Keywords: Autonomous robot, archaeological excavations, monitoring system, multi-agent systems

Abstract

The great interest in cultural heritage reflects a person's desire to know and understand
their origins and achievements. However, archaeological sites, like the natural environment, are
finite non-renewable resources. Of all the types of heritage under threat, archaeological sites and
their wealth of information and artifacts are the most threatened. In current practice, options for
the preservation of archaeological sites include reconstruction, reassembly (anastilesis), in situ conservation and protection, including shelter and/or tissue consolidation, ex situ preservation by
relocation, and reburial with or without site interpretation. her. However, it is very important not
to move or lose artifacts during archaeological excavations. If they are lost or moved, their information
potential is lost. In order to ensure constant control of the process of archaeological research,
fixing the artifacts found, building a three-dimensional model of the object under study
and ensuring safety at the site, an excavation monitoring system has been developed, deployed on
an autonomous robot. The objective of this study is the development of hardware and software for
the robot. The robot is a suspended platform for data collection, the movement of which is provided
by several cables fixed on fixed supports. The movement of the platform (both in the plane and
in height) is provided by changing the length of the cables. Such a movement scheme makes it
possible to move the platform in the entire plane of the triangle formed by the fixed supports, as
well as to descend or ascend to a height limited by the height of the supports themselves. The data
acquisition platform is a flat platform with a communication module, a microcontroller and a
battery installed on it. A gyro stabilizer is attached to the bottom, with a video camera and a
rangefinder mounted on it, which allows you to dampen vibrations during the movement of the
platform and external disturbances. A multi-agent algorithm for the operation of the robot monitoring
system during excavation is presented. A program has been developed for managing and
collecting data from the monitoring system of archaeological sites.To test the monitoring system, a
robot prototype was made, which was tested during excavations of a complex of archaeological
monuments in the Baksan region of the Kabardino-Balkarian Republic.

References

1. Bickler S.H. Machine learning arrives in archaeology // Advances in Archaeological Practice.
– 2021. – Vol. 9, No. 2. – P. 186-191.
2. Coad M.M. et al. Vine Robots // IEEE Robotics & Automation Magazine. – 2019. – Vol. 27,
No. 3. – P. 120-132.
3. Morgan C. Avatars, monsters, and machines: A cyborg archaeology // European Journal of
Archaeology. – 2019. – Vol. 22, No. 3. – P. 324-337.
4. Mantovan L., Nanni L. The computerization of archaeology: survey on artificial intelligence
techniques // SN Computer Science. – 2020. – Vol. 1. – P. 1-32.
5. Tsiogkas N. et al. Efficient multi-AUV cooperation using semantic knowledge representation
for underwater archaeology missions // 2014 Oceans-St. John's. – IEEE, 2014. – P. 1-6.
6. Allotta B. et al. The ARROWS project: adapting and developing robotics technologies for
underwater archaeology // IFAC-PapersOnLine. – 2015. – Vol. 48, No. 2. – P. 194-199.
7. Johnson‐Roberson M. et al. High‐resolution underwater robotic vision‐based mapping and
three‐dimensional reconstruction for archaeology // Journal of Field Robotics. – 2017.
– Vol. 34, No. 4. – P. 625-643.
8. Hotta S., Mitsui Y., Suka M. et al. Lightweight underwater robot developed for archaeological
surveys and excavations // Robomech. – 2023. – Vol. 10. – P. 2-12. https://doi.org/10.1186/
s40648-023-00240-4.
9. Barceló J.A., Cameron S., Kenderdine F. Automatic archaeology // Theorizing digital cultural
heritage. – 2007. – P. 437-56.
10. Fuller G. Towards an archaeology of'know-how' // Cultural studies review. – 2013. – Vol. 19,
No. 1. – P. 271-295.
11. Lieven V. ArchGeoRobot: Automated Archaeo-Geophysical Data Acquisition Using an Unmanned
Ground Vehicle // ArcheoSciences. – 2021. – 45-1. – P. 219-221.
12. Zhang G. et al. SmartCaveDrone: 3D cave mapping using UAVs as robotic co-archaeologists
// 2017 International Conference on Unmanned Aircraft Systems (ICUAS). – IEEE, 2017.
– P. 1052-1057.
13. Forte M., Pietroni E. 3D collaborative environments in archaeology: Experiencing the reconstruction
of the past // International Journal of Architectural Computing. – 2009. – Vol. 7,
No. 1. – P. 57-76.
14. Гапоненко Е.В., Рыбак Л.А., Холошевская Л.Р. Структурный анализ и классификация
роботизированных систем с приводными механизмами на основе кабельных элементов
// Вестник БГТУ им. В.Г. Шухова. – 2019. – № 9. – С. 126-136. – DOI: 10.34031/article_
5da4652c1400a3.95219452.
15. Прокопец С.Д., Белов Д.М. Современные способы фиксации археологических объектов в
полевых условиях // Мультидисциплинарные исследования в археологии. – 2018. – № 2.
– С. 94-102.
16. Шуберт Х. 3Д-фотограмметрия с применением БПЛА в процессе археологического
исследования // Вестник Омского университета. Серия «Исторические науки». – 2016.
– № 4. – С. 124-127.
17. Голованова Л.В., Дороничев В.Б., Дороничева Е.В. Новые данные по палеолиту Приэльб-
русья // Российская археология. – 2019. – № 2. – С. 7-18.
18. Исследование памятников эпохи палеолита. Серия «Методика полевых археологических
исследований». Вып. 7. – М.: ИА РАН, 2012. – 80 с.
19. Пшенокова И.А., Сундуков З.А. Разработка имитационной модели сценарного прогнози-
рования поведения интеллектуального агента на основе инварианта рекурсивной муль-
тиагентной нейрокогнитивной архитектуры // Известия Кабардино-Балкарского научно-
го центра РАН. – 2020. – № 6 (98). – С. 80-90.
20. Нагоев З.В. Интеллектика, или мышление в живых и искусственных системах. – Наль-
чик: Изд-во КБНЦ РАН, 2013. – 211 с.
21. Nagoev Z. et al. Learning algorithm for an intelligent decision making system based on multiagent
neurocognitive architectures // Cognitive Systems Research. – 2021. – Vol. 66. – P. 82-88.
22. Nagoev Z. et al. Multi-agent neurocognitive architecture of an intelligent agent pattern recognition
system // Procedia Computer Science. – 2022. –Vol. 213. – P. 504-509.
23. Нагоев З.В. и др. Автономный синтез пространственных онтологий в системе принятия
решений мобильного робота на основе самоорганизации мультиагентной нейрокогни-
тивной архитектуры // Известия Кабардино-Балкарского научного центра РАН. – 2020.
– №. 6 (98). – С. 68-79.
Published
2023-04-10
Section
SECTION I. PROSPECTS FOR THE APPLICATION OF ROBOTIC COMPLEXES