PERSPECTIVE ARCHITECTURE OF DIGITAL PHOTONIC COMPUTER

  • I.I. Levin Supercomputers and Neurocomputers Research Center
  • D. А. Sorokin Supercomputers and Neurocomputers Research Center
  • А. V. Kasarkin Supercomputers and Neurocomputers Research Center
Keywords: Digital photonic computer, supercomputers, architecture of DPC, paradigm of structural calculations

Abstract

Modern computationally intensive tasks of mathematical physics require continuous increasing
of the performance of computer equipment used for their highly efficient solution. However,
at present, the development of their electronic components is slowing down due to limitations
of technological production and operational processes. One of the ways to overcome the computer
productivity growth crisis is the development of digital photonic computers (DPC). In the paper
we suggest a promising DPC architecture, which consists of a functional subsystem, data stream
synchronization and switching subsystems, and photonic-electronic interfaces of data exchange
with external devices. We describe the principles of each subsystem. The functional subsystem is a
set of DPC devices that provide 64-bit floating point arithmetic logic operations (according to the
IEEE754 standard), implemented as linear pipelines with processing of least significant bits forward.
The synchronization subsystem provides a single rate of data flow among various functional
devices of the DPC, combined into a computing structure. According to the topology of the computing
structure, the switching subsystem controls the data streams at the stage of DPC programming
or during processing according to conditional transitions. For data exchange between the
DPC and external devices, we suggest the technology of serialization of low-frequency parallel
channels and deserialization of high-frequency serial channels. We give a theoretical evaluation of the performance of the computing structures implemented on the DPC, which is similar to the
structures of mathematical physics problems concerning processing of special matrices. We show
that DPCs, due to their clock frequency, can provide the performance that exceeds the performance
of microelectronic devices by two and more orders of magnitude.

References

1. Chernyak L. Zakon Amdala i budushchee mnogoyadernykh protsessorov [Amdahl's Law and
the future of multicore processors], Otkrytye sistemy [Open Systems]. SUBD, 2009, No. 04.
Available at: https://www.osp.ru/os/2009/04/9288815/ (accessed 31 October 2022).
2. Bérut Antoine. Information and Thermodynamics: Exper mental Ver f cat on of Landauer’s
Principle Linking Information and Thermodynamics. Available at: https://arxiv.org/pdf/
1503.06537.pdf (accessed 28 October 2022).
3. 10 let do 10 nm: zakon Mura vse eshche rabotaet [10 years to 10 nm: Moore's law still works],
PCNews, 12.07.2008. Available at: http://pcnews.ru/news/10-channalweb-intel-pat-gelsinger-100-
tsmc-45-2009-1965-33-1971-1978-1989-1997-25-2005-65-pentium-233904.html (accessed 28 October
2022).
4. Cerofolini C.F., Mascolo D. Hybrid Route From CMOS to Nano and Molecular Electronics,
Nanotechnology for electronic materials and devices. Springer Science+Business Media, LLC,
2007, pp. 1-65.
5. Stepanenko S.A. Fotonnyy komp'yuter: struktura i algoritmy, otsenki parametrov [Photonic computer:
structure and algorithms, parameter estimates], Fotonika [Photonics], 2017, No. 7 / 67.
DOI: 10.22184/1993-7296.2017.67.7.72.83.
6. Stepanenko S.A. Fotonnaya vychislitel'naya mashina. Printsipy realizatsii. Otsenki parametrov
[Photonic computing machine. Principles of implementation. Parameter estimates], Doklady
Akademii nauk [Reports of the Academy of Sciences], 2017, Vol. 476, No. 4, pp. 389-394.
DOI: 10.1134/S1064562417050234.
7. Henri H. Arsenault, Yunlong Sheng. An Introduction to Optics in Computers. Vol. 8 of Tutorial
texts in optical engineering. SPIE Press, 1992.
8. Richard V. Stone; Frederick F. Zeise and Peter S. Guilfoylev. DOC II 32-bit digital optical
computer: optoelectronic hardware and software, Proc. SPIE 1563, Optical Enhancements to
Computing Technology, 267 (December 1, 1991). DOI: 10.1117/12.49689.
9. Jacob Barhen, Charlotte Kotas, Travis S Humble, Pramita Mitra, Neena Imam, Mark A Buckner,
and Michael R Moore. High performance FFT on multicore processors, In 2010 Proceedings
of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and
Communications. IEEE, 2010, pp. 1-6.
10. Shubin V.V., Balashov K.I. Patent № 2677119 C1 Ross yskaya Federats ya, MP G02F 3/00,
G02F 1/095. Polnost'yu opticheskiy logicheskiy bazis na osnove mikrokol'tsevogo rezonatora:
№ 2018111870: zayavl. 02.04.2018: opubl. 15.01.2019; zayavitel' Rossiyskaya Federatsiya, ot
imeni kotoroy vystupaet Gosudarstvennaya korporatsiya po atomnoy energii "Rosatom",
Federal'noe gosudarstvennoe unitarnoe predpriyatie "Rossiyskiy federal'nyy yadernyy tsentr –
Vserossiyskiy nauchno-issledovatel'skiy institut eksperimental'noy fiziki" (FGUP "RFYATSVNIIEF")
[Patent No. 2677119 C1 Russian Federation, IPC G02F 3/00, G02F 1/095. A fully optical
logical basis based on a micro–ring resonator: No. 2018111870: declared 02.04.2018: published
15.01.2019; the applicant is the Russian Federation, on behalf of which the State Atomic
Energy Corporation Rosatom, the Federal State Unitary Enterprise Russian Federal Nuclear Center
- All-Russian Research Institute of Experimental Physics (FSUE RFNC-VNIIEF).
11. Tamer A. Moniem. All-optical XNOR gate based on 2D photonic-crystal ring resonators,
Quantum Electronics, 2017, 47 (2): 169. DOI: 10.1070/QEL16279.
12. Bekus Dzh. Mozhno li osvobodit' programmirovanie ot stilya fon Neymana? Funktsional'nyy
stil' i sootvetstvuyushchaya algebra programm, Issledovatel'skaya laboratoriya IBM, San
Khose, 1977 [Is it possible to free programming from the von Neumann style? Functional
Style and the corresponding algebra of programs, IBM Research Laboratory, San Jose, 1977].
13. Flynn M.J. Very High-Speed Computing System, Proceedings IEEE, 1966, No. 54, pp. 1901-1909.
14. Flynn M.J. Some Computer Organizations and their Effectiveness, IEEE Transactions on
Computers, Sep. 1972, Vol. 24, pp. 948-960.
15. Wulf W.A., McKee S.A. Hitting the Memory Wall: Implications of the Obvious, Computer
Architecture News, Mar. 1995, Vol. 23, No. 1, pp. 20-24.
16. Next generat on photon c memory dev ces are ‘l ght-wr tten’, ultrafast and energy eff c ent,
2019. Available at: https://www.tue.nl/en/news/news-overview/10-01-2019-next-generationphotonic-
memory-devices-are-light-written-ultrafast-and-energy-efficient/ (accessed 31 October
2022).
17. Using light for next-generation data storage, 2018. Available at: https://phys.org/news/2018-
06-next-generation-storage.html.
18. Qiming Zhang, Zhilin Xia, Yi-Bing Cheng & Min Gu. High-capacity optical long data memory
based on enhanced Young’s modulus n nanoplasmon c hybr d glass compos tes, 2018. Available
at: https://phys.org/news/2018-06-next-generation-storage.html.
19. Gordeev A., Voytovich V., Svyatets G. Perspektivnye fotonnye i fononnye otechestvennye
tekhnologii dlya teragertsovykh mikroprotsessorov, OZU i interfeysa so sverkhnizkim
energopotrebleniem [Promising photonic and phonon domestic technologies for terahertz microprocessors,
RAM and interface with ultra-low power consumption], Sovremennaya
elektronika [Modern electronics], No. 2,22. Available at: https://www.soel.ru/online/
perspektivnye-fotonnye-i-fononnye-otechestvennye-tekhnologii-dlya-teragertsovykhmikroprotsessorov-
o/.
20. Joseph Buck, Edward A. Lee. The token flow model, Data Flow Workshop, Hamilton Island,
Australia, May 1992.
21. Ben Lee, Hurson A.R. Dataflow Architectures and Multithreading, IEEE Computer, 1994,
Vol. 27, No. 8, pp. 27-39.
22. Kokhonen T. Assotsiativnye zapominayushchie ustroystva [Associative storage devices]. Moscow.:
Mir, 1982, 384 p.
23. Triliven F.K. Modeli parallel'nykh vychisleniy [Models of parallel computing], Sistemy
parallel'noy obrabotki [Parallel processing systems], ed. by D. Ivensa. Moscow: Mir, 1985,
pp. 277-284.
24. Miheli J., Сibej U. Experimental Comparison of Matrix Algorithms for Dataflow Computer
Architecture, in Acta Electrotechnica et Informatica, 2018, Vol. 18, No. 3, pp. 47-56.
25. Yazdanpanah F., Alvarez-Martinez C., Jimenez-Gonzalez D. and Etsion Y. Hy-brid Dataflow/
von-Neumann Architectures, in IEEE Transactions on Parallel and Distributed Systems,
June 2014, Vol. 25, No. 6, pp. 1489-1509. DOI: 10.1109/TPDS.2013.125.
26. Kalyaev A.V., Levin I.I. Modul'no-narashchivaemye mnogoprotsessornye sistemy so
strukturno-protsedurnoy organizatsiey vychisleniy [Modular-stackable multiprocessor systems
with structural and procedural organization of computing]. Moscow: Yanus-K, 2003, 380 p.
27. Kalyaev I.A., Levin I.I., Semernikov E.A., Shmoylov V.I. Rekonfiguriruemye mul'tikonveyernye
vychislitel'nye struktury [Reconfigurable multiconveyor computing structures]. Rostov-on-
Don: Izd-vo YuNTS RAN, 2008, 393 p.
28. Dave Lewis SerDes. Architectures and Applications. DesignCon 2004 National Semiconductor
Corporation. Available at: https://chenweixiang.github.io/docs/SerDes_Architectures_and_
Applications.pdf (accessed 31 October 2022).
29. Kheld G. Tekhnologii peredachi dannykh [Data transmission technologies]: transl. from engl.
7 ed. Saint Petersburg: Piter, 2003,715 p. (Classics of computer science).
30. Shpakovskiy G.I. Verkhoturov A.E. Algoritm parallel'nogo resheniya SLAU metodom Gaussa-
Zeydelya [Algorithm for parallel SLOUGH solution by Gauss-Seidel method], Vestnik BGU
[Bulletin of BSU. Ser. 1], 2007, No. 1, pp. 44-48.
Published
2023-02-27
Section
SECTION I. MODELING OF PROCESSES AND SYSTEMS