SYNERGETIC SYNTHESIS OF AN AUTOPILOT TO CONTROL THE BE-200 AMPHIBIAN AIRCRAFT DURING WATER INTAKE
Abstract
The article is devoted to solving the problem of controlling the Be-200 amphibious aircraft when
taking water in the gliding mode. The specified mode of flight of an amphibious aircraft (AA) is one of
the most intense for piloting. Controlling an aircraft in gliding mode requires the highest concentration
from the pilot, since the hydrodynamic characteristics decrease, but the aerodynamic ones increase,
which causes situations in which the SA becomes uncontrollable. To ensure the safe operation of the AA
during water intake, as well as to ensure a steady takeoff, the pilot is forced to constantly maintain a
certain value of speed, trim angle, and engine thrust by moving the engine control stick (ECS). In this
regard, it seems very appropriate to use the technical means of the autopilot, which provides control of
the speed, engine thrust and trim angle to ensure the stability of the movement of the SA during the intake
of water. The article deals with the problem of synthesizing an autopilot to control the movement of
an amphibian aircraft during water intake, and at the same time the following tasks are solved: the
synthesis of an autopilot to control the longitudinal movement of an amphibian aircraft, as well as control
landing on water, followed by water intake and takeoff from the water. The substantiation of the
choice of a mathematical model of the movement of an aircraft on water is given. A procedure for the
synergistic synthesis of the autopilot controller of an amphibious aircraft in the water intake mode presented.
The novelty of the ongoing research lies not only in considering the stable movement of an amphibious
aircraft during its operation on the water surface, but also in modeling the process of waterintake in planning mode, which is a more complex task from the point of view of synthesis. As a result,
the control laws for the autopilot obtained, which ensure the stable movement of the amphibious aircraft
when descending along the glide path, landing on water, taking in water and subsequent takeoff with
damping of longitudinal oscillations along the trim angle throughout the entire water intake cycle.
References
Bol’shaya Rossiyskaya Entsiclopediya, 1994, 736 p.
2. Kosourov K.F. Teoreticheskie osnovy gidroaviatsii [Theoretical basics of hydroaviation].
Мoscow: Voenizdat, 1961.
3. Kobzev V.A., Kolesnikov A.A., Nguen F. Problemy upravleniya vzletom gidrosamoletov v
usloviyakh deistviya vozmushcheniy vneshney sredy [Problems of seaplane takeoff control
under the influence of environmental disturbances], Sb. dokladov VIII Nauchoy konferentsii po
gidroaviacii «Gidroaviasalon-2008» [Collection of reports of the VIII scientific conference on
hydroaviation «Hydroaviasalon-2008»]. Мoscow: Izd. CAGI, 2008.
4. Lukomskiy V.A., Chugunov V.S. Sistemy upravleniya morskimi podvizhnimi ob’ektami:
uchebnik [Control systems for marine mobile objects: tutorial]. Leningrad: Sudostroenie,
1988, 272 p.
5. Volkov G.V. Osnovy gidroaviatsii [Basics of hydroaviation]. Мoscow: Voenizdat, 1940.
6. Lotov A.V. Glissirovanie i bystryy vkhod tel v vodu [Water gliding and rapid entry of bodies
into the water]. Мoscow: Izd. MFTI, 1984.
7. Dyritsin Y.G., Anastasov V.K., Samokhin V.V., Safronov P.V. Osnovy gidromekhaniki
gidrosamoleta [Basics of sealplane hydromechanics]. Taganrog: IP Ashikhmina O.S., 2016,
362 p.
8. Samolet-amfibiya BE-200ChS. Rukovodstvo po letnoy ekspluatatsii [Flight manual]. Book 1
«Letnoe rukovodstvo». A201.0000.000 RLE-1.
9. Ostoslavskiy I.V., Strazheva I.V. Dinamika poleta. Traektorii letatelnykh apparatov [Flight
dynamics. Aircraft trajectories]. Мoscow: Mashinostroenie, 2005.
10. Dyritsin Y.G., Dyritsin D.Y. Gidrodinamicheskie ispytaniya modeley gidrosamoletov [Hydrodynamic
testing of seaplane models]. Taganrog: IP Ashikhmina O.S., 2015, 283 p.
11. Epstein L.A. Metody teorii razmernostey i podobiya v zadachakh gidromekhaniki sudov
[Methods of the theory of dimensions and similarity in problems of hydromechanics of ships].
Leningrad: Sudostroenie, 1970.
12. Bannikov Y.M., Lukashevskiy V.A., Luk’yanov S.S. Matematicheskaya model’ dvizheniya
gidrosamoleta na volnenii [Mathematical model of seaplane motion in waves], Sb. dokladov I
Nauchoi konferencii po hidroaviacii «Gelendjik-96» [Collection of reports of the I scientific
conference on hydroaviation «Gelendzhik-96»]. Moscow: Izd. TsAGI, 1996.
13. Spravochnik aviakonstruktora. T. II. Gidromekhanika gidrosamoleta [Aircraft conctructor’s
handbook. Vol. II. Seaplane hydromechanics]. Moscow: Izd. TsAGI, 1938.
14. Bukov V.N. Adaptivnye prognoziruyschie sistemy upravleniya poletom [Adaptive predictive
flight control systems]. Мoscow: Nauka: Gl. red. Fiz.-mat. lit., 1987.
15. Kolesnikov A.A. Novye nelineynye metody upravleniya poletom [New non-linear flight control
methods]. Мoscow: Fizmatlit, 2013, 193 p.
16. Sovremennaya prikladnaya teoriya upravleniya: Sinergeticheskiy podkhod v teorii upravleniya
[Modern applied control theory: Synergetic approach in control theory], ed. by
A.A. Kolesnikova. FTs «Integratsiya». Part II. Мoscow: Taganrog: Izd-vo TRTU, 2000.
17. Kolesnikov A.A. Sinergeticheskaya teoriya upravleniya [Synergetic control theory]. Мoscow:
Energoatomizdat, 1994.
18. Kolesnikov A.A. Sinergeticheskie metody upravleniya slozhnymi sistemami: teoriya
sistemnogo sinteza [Synergetic methods for complex systems control: the theory of system
synthesis]. Мoscow: KomKniga, 2006.
19. Popov A.N. Matematicheskie modeli letatel’nykh apparatov: ucheb. posobie [Mathematical
models of aircraft. Tutorial]. Taganrog.: Izd-vo TTI SFEDU, 2008.
20. Bondarets A.J. Sistema avtomaticheskogo upravleniya uglom khoda samoleta-amfibii pri
dvizhenii po vode na rezhime glissirovaniya [The system of automatic control of the angle of
the amphibious aircraft when moving through the water in the gliding mode], Sb. dokladov V
Nauchoi konferentsii po gidroaviatsii «Gidroaviasalon-2004» [Collection of reports of the I
scientific conference on hydroaviation «Hidroaviasalon-2004»]. Мoscow: Izd. TsAGI, 2004.
21. Nikitin A.I. Realizatsiya matematicheskoy modeli prostranstvennogo dvizheniya samoletaamfibii
Be-200 v srede MATLAB/Simulink [Implementation of a mathematical model of the
spatial motion of the Be-200 amphibious aircraft in MATLAB/Simulink], Issledovaniya i
perspektivnye razrabotki v aviatsionnoy promyshlennosti: Stat’i i materialy konferentsii [«Research
and advanced developments in the aviation industry»: Articles and conference materials].
Moscow: OAO «OKB Suhogo», 2005, pp. 80-84.