AN ALGORITHM FOR INFORMATION FUSION OF GNSS/GYROS ATTITUDE SENSORS OF A MOVING VEHILCLE

  • S.A. Savelyev
  • I.V. Solovyev Branch office of “The United Rocket and Space Corporation” – “Research Institute for Space Devices”
Keywords: Inertial angular rates sensors, gyros, multi-antennas GNSS receiver, information fusion, satellite navigation systems

Abstract

The purpose of this paper is to increase the accuracy and stability of moving vehicle attitude estimation by GNSS/gyros attitude sensors information fusion. To this end, an algorithm is pro-posed which integrates carrier phase measurements of multi-antennas GNSS signal receiver and angular rate measurements provided by gyros. The algorithm estimates attitude parameters (di-rection cosine matrix, quaternion), angular rate vector and vector of gyro biases. The difference of the proposed method from the majority of previously developed methods is that the attitude solu-tion is obtained in two stages: first, attitude quaternion is estimated using a batch algorithm; next, this quaternion is used as an effective measurement in linear Kalman filter. GNSS signal receiver measures carrier phase differences between signals of navigation satellites detected by antennas placed at different points in space. These phase differences are converted to vector form. This makes it possible to use one of the well-known fast algorithms developed for Wahba problem solu-tion. Covariance analysis of this solution is presented and an expression for error covariance matrix is derived. The quaternion (direction cosine matrix) obtained is a maximum likelihood es-timate of the attitude. Therefore, this quaternion can be used as an effective measurement in linear Kalman filter. The filter state vector includes attitude quaternion and vector of gyro biases. This approach makes it possible to increase computational efficiency of the algorithm by avoiding the use of extended Kalman filter and to enhance numerical stability. Mathematical simulation results demonstrate stable algorithm performance under the influence of GNSS receiver measurement noise as well as dynamic system model noise caused be gyros measurement noise and rate random walk noise. Simulation results also indicate that the proposed algorithm allows for substantially increased accuracy of attitude estimates in comparison with the accuracy provided by batch algo-rithm. The proposed algorithm also enhances stability of navigation information user to the GNSS faults by propagating attitude and angular velocity estimates through GNSS signal outage without substantial loss in accuracy.

References

1. ГЛОНАСС. Принципы построения и функционирования. – 4-е изд. / под ред. А.И. Перо-ва, В.Н. Харисова. – М.: Радиотехника, 2010. – 800 с.
2. Перов А.И., Шатилов А.Ю. Оценивание углов ориентации объекта с использованием спутниковых радионавигационных систем // Радиотехнические тетради. – 2008. – № 37. – C. 53-56.
3. Поваляев А.А. Определение ориентации объектов по сигналам глобальных навигацион-ных спутниковых систем. – М.: Радиотехника, 2015. – 320 с.
4. Crassidis J.L., Markley F.L. New Algorithm for Attitude Determination Using Global Posi-tioning System Sygnals // AIAA Jpurnal of Guidance, Control, and Dynamics. – Sept.-Oct. 1997. – Vol. 20, No. 5. – P. 891-896.
5. Giorgi G., Buist P.J., Verhagen S., Teunissen P.J.G. GNSS-Based Attitude Determination. Aerospace and Formation Flying // InsideGNSS. – July – August 2011. – P. 62-71.
6. Cohen C.E. Attitude Determination Using GPS // PhD thesis, Stanford University, Department of Aeronautics and Astronautics, 1992.
7. Crassidis J.L., Lightsey E.G., Markley F.L. Efficient and Optimal Attitude Determination Us-ing Recursive Global Positioning System Signal Operations // Journal of Guidance, Control, and Dynamics. – Vol. 22 (2), – P. 193-201.
8. Park F.C., Kim J., Kee C. Geometric Descent Algorithms for Attitude Determination Using GPS // In 14th World Congress of IFAC, P. 557 – 562, Seoul, Korea, 1999.
9. Перов А.И. Синтез комплексного алгоритма фильтрации разностей фаз в инерциально-спутниковой угломерной навигационной аппаратуре // Радиотехника. – 2018. – № 9. – С. 120-130.
10. Емельянцев Г.И., Степанов А.П. Интегрированные инерциально-спутниковые системы ориентации и навигации / под общей ред. акад. РАН В.Г. Пешехонова. – СПб.: ГНЦ РФ АО «Концерн «ЦНИИ «Электроприбор», 2016. – 394 с.
11. Wang C. Development of a Low-cost GPS-based Attitude Determination System // PhD thesis, University of Calgary, Department of Geomatics Engineering, 2003.
12. Hirokawa R., Ebinuma T. A Low-Cost Tightly Coupled GPS/INS for Small UAVs Augmented with Multiple GPS Antennas // Navigation: Journal of the Institute of Navigation. – 2009. – Vol. 56, No. 1. – P. 35-44.
13. Wahba G. A Least Squares Estimate of Spacecraft Attitude // SIAM Review. – 1965. – Vol. 7, No. 3. – P. 409.
14. Shuster M.D. Approximate Algorithms for Fast Optimal Attitude Computation // AIAA Paper 78-1249, AIAA Guidance and Control Conference, Palo Alto, CA, August 7-9, 1978.
15. Shuster M.D., Oh S.D. Three-Axis Attitude Determination from Vector Observations // Journal of Guidance and Control. – January-February 1981. – Vol. 4, No. 1. – P. 70-77.
16. Mortari D. ESOQ: A Closed-Form Solution to the Wahba Problem // The Journal of the Astronautical Sciences. – July-September 1997. – Vol. 45, No. 2. – P. 195-204.
17. Mortari D. Second Estimator of the Optimal Quaternion // Journal of Guidance, Control and Dynamics. – 2000. – Vol. 23, No. 5. – P. 885-888.
18. Markley F.L. Attitude Determination Using Vector Observations: a Fast Optimal Matrix Algorithm // The Journal of the Astronautical Sciences. – April-June 1993. – Vol. 41, No. 2. – P. 261-280.
19. Соловьев И.В. Алгоритм “ORIENT” оценки ориентации космического аппарата по астроиз-мерениям // Авиакосмическое приборостроение. – 2012. – № 12. – C. 11-19.
20. Shuster M.D. Maximum Likelihood Estimation of Spacecraft Attitude // Journal of the Astronautical Sciences. – January – March 1989. – Vol. 37, No. 1. – P. 79-88.
Published
2019-05-08
Section
SECTION IV. COMMUNICATION, NAVIGATION AND GUIDANCE