IMPULSE CHARACTERISTICS OF SILICON STRUCTURES WITH N-P JUNCTION IRRADIATED BY PROTONS

  • N.М. Bogatov Kuban State University
  • V.S. Volodin Kuban State University
  • L.R. Grigoryan Kuban State University
  • А.I. Kovalenko Kuban State University
  • М.S. Kovalenko Kuban State University
Keywords: Silicon, n -p junction, lifetime, proton

Abstract

Currently, methods are being actively developed to create semiconductor structures with desired
properties by irradiation with ionizing particles (radiation defect engineering). The interaction
of radiation defects with impurities, dislocations and other structural defects causes a change in the
properties of semiconductors and semiconductor devices. Irradiation with protons makes it possible
to controllably create radiation defects with a distribution maximum in a pre-calculated region. The
aim of this work is to analyze the effect of irradiation with low-energy protons on the impulse characteristics
of silicon structures with an n+-p junction. The task is to determine the effective lifetime  of
charge carriers in the space charge region (SCR) of the n+-p junction. The n+-p-p+-structures made
of silicon grown by the Czochralski method, irradiated from the side of the n+-layer by a low-energy
proton flux at sample temperatures of 300 K and 83 K were studied. To measure the impulse characteristics,
bipolar rectangular voltage pulses with a constant amplitude of 10 mV and a frequency of
1 MHz were used. The experimental data are explained using models of nonstationary charge carrier
transport in inhomogeneous semiconductors and the formation of radiation defects in silicon underthe action of protons. Depth distributions of the average number of primary radiation defects are
calculated: interstitial silicon, vacancies, divacancies created by one proton per unit length of the
projective path. It is shown that irradiation with protons with a dose of 1015 cm2 and an energy of
40 keV does not change the value of , but with an energy of 180 keV creates a region with an effective
lifetime of 5.5108 s in the SCR of the n+-p junction.

References

1. Chelyadinskiy A.R., Komarov F.F. Defektno-primesnaya inzheneriya v implantirovannom
kremnii [Defect-impurity engineering in implanted silicon], Uspekhi fizicheskikh nauk [Successes
of Physical Sciences], 2003, Vol. 173, No. 8, pp. 813-846.
2. Lebedev A.A., Davydov V.Yu., Smirnov A.N., Eliseyev I.A., Davydovskaya K.S., Zavarin E.E.,
Zakheim D.A., Lundin W.V., Nikolaev A.E., Sakharov A.V., Tsatsulnikov A.F., Zubov A.V.,
Kozlovski V.V. Proton irradiation effects on GaN-based epitaxial structures, Journal of Physics:
Conference Series, 2020, 1697, 012073, pp. 1-6.
3. Brudnyy V.N. Radiatsionnye effekty v poluprovodnikakh [Radiation effects in semiconductors],
Vestnik Tomskogo gosudarstvennogo universiteta. Seriya “Fizika” [Bulletin of Tomsk
State University. Series “Physics"], 2005, No. 285, pp. 95-102.
4. Sobolev N.A. Inzheneriya defektov v implantatsionnoy tekhnologii kremnievykh svetoizluchayushchikh
struktur s dislokatsionnoy lyuminestsentsiey [Engineering of defects in implantation
technology of silicon light-emitting structures with dislocation luminescence],
Fizika i tekhnika polu-provodnikov [Physics and technology of semi-conductors], 2010,
Vol. 44, V. 1, pp. 3-25.
5. Iles P.A. Evolution of space solar cells, Solar Energy Materials & Solar Cells, 2001, Vol. 68,
I. 1, pp. 1-13.
6. Kozlov V.A., Kozlovskiy V.V. Legirovanie poluprovodnikov radiatsionnymi defektami pri
obluchenii protonami i -chastitsami [Doping of semiconductors with radiation defects when
irradiated with protons and -particles], Fizika i tekhnika poluprovodnikov [Physics and Technology
of semiconductors], 2001, Vol. 35, V. 7, pp. 769-795.
7. Gubarev V., Semenov A., Surma A., Stolbunov V. Tekhnologiya protonnogo oblucheniya i
vozmozhnosti ee primeneniya dlya uluchsheniya kharakteristik silovykh diodov i tiristorov
[Proton irradiation technology and the possibilities of its application to improve the characteristics
of power diodes and thyristors], «Proton-Elektroteks». Available at: https://protonelectrotex.
com/files/project_52/15_Protonnoe_obluchenie_rus.pdf (publication date 29 November
2011).
8. Asadchikov V.E., D'yachkova I.G., Zolotov D.A., Krivonosov Yu.S., Bublik V.T., SHikhov A.I.
O svyazi protonnogo oblucheniya i termicheskoy obrabotki monokristallicheskogo kremniya s
ego strukturoy [On the connection of proton irradiation and heat treatment of monocrystalline
silicon with its structure], Izvestiya vuzov. Materialy elektronnoy tekhniki [zvestiya vuzov. Materials
of electronic equipment], 2019, Vol. 22, No. 1, pp. 18-26.
9. Anfimov I.M., Kobeleva S.P., Pylnev A.V., Schemerov I.V., Egorov D. S., Yurchuk S.Yu. On the
Problem of Determining the Bulk Lifetime by Photoconductivity Decay on the Unpassivated Samples
of Monocrystalline Silicon, Russian Microelectronics, 2017, Vol. 46, No. 8, pp. 585-590.
10. Koshelev O.G., Vasiljev N.G. Separate determination of the photoelectric parameters of n+-
p(n)-p+ silicon structure base region by noncontact method based on measurements of quantum
efficiency relationships at two wavelengths, Modern Electronic Materials, 2017, Vol. 3, No. 3,
pp. 127-130.
11. Bscheid C., Engst C.R., Eisele I., Kutter C. Minority Carrier Lifetime Measurements for Contactless
Oxidation Process Characterization and Furnace Profiling, Materials, 2019, Vol. 12,
No. 1, pp. 1-13.
12. Sam R., Zouma B., Zougmoré F., Koalaga Z., Zoungrana M., Zerbo I. 3D determination of the
minority carrier lifetime and the p-n junction recombination velocity of a polycrystalline silicon
solar cell, IOP Conf. Series: Materials Science and Engineering, 2012, Vol. 29,
No. 012018, pp. 1-8.
13. Bogatov N.M., Grigor'yan L.R., Kovalenko A.I., Kovalenko M.S., Lunin L.S. Impul'snye
kharakteristiki kremnievykh fotoelektricheskikh preobrazovateley, obluchennykh nizkoenergeticheskimi
protonami [Pulse characteristics of silicon photovoltaic converters irradiated
with low-energy protons], Pis'ma v ZhTF [Letters to the Journal of Technical Physics], 2021,
Vol. 47, V. 7, pp. 10-12.
14. Agafonov Yu.A., Bogatov N.M., Grigor'yan L.R., Zinenko V.I., Kovalenko A.I., Kovalenko M.S.,
Kolokolov F.A. Vliyanie radiatsionnykh defektov, sozdannykh nizkoenergeticheskimi protonami
v sil'nolegirovannom sloe, na kharakteristiki kremnievykh n+–p–p+-struktur [The effect of radiation
defects created by low–energy protons in a highly alloyed layer on the characteristics of silicon
n+–p-p+ structures], Poverkhnost'. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya
[Surface. X-ray, synchrotron and neutron studies], 2018, No. 10, pp. 86-91.
15. Bogatov N.M., Grigor'yan L.R. Kovalenko A.I., Kovalenko M.S., Kolokolov F.A., Lunin L.S.
Vliyanie radiatsionnykh defektov, sozdannykh nizkoenergeticheskimi protonami pri temperature
83 K, na kharakteristiki kremnievykh fotoelektricheskikh struktur [The influence of radiation
defects created by low-energy protons at a temperature of 83 K on the characteristics of
silicon photovoltaic structures], Fizika i tekhnika poluprovodnikov [Physics and technology of
semiconductors], 2020, Vol. 54, V. 2, pp. 144-149.
16. Shockley W. The theory of p-n junctions in semiconductors and p-n junction transistors, Bell
Syst. Tech. J., 1949, Vol. 28, No. 7, pp. 435-439.
17. Pulfrey D.L. Understanding Modern Transistors and Diodes. Cambridge University Press,
2010, 335 p.
18. Bogatov N.M. Radiatsionnye defekty v kremnii, vyrashchennom metodom CHokhral'skogo
[Radiation defects in silicon grown by the Chokhralsky method], Poverkhnost' [Surface],
1999, No. 3, pp. 72-78.
19. Bogatov N.M., Kovalenko M.S. Calculation of Frenkel Pairs Separation, Formed in Silicon as a
Result of Ionizing Particles Irradiation, AASCIT Journal of Physics, 2017, Vol. 3, I. 3, pp. 13-17.
20. Bogatov N.M., Grigor'yan L.R., Klenevskiy A.V., Kovalenko M.S. Modelirovanie oblastey
razuporyadocheniya v protsesse radiatsionnogo defektoobrazovaniya [Modeling of areas of
disordering in the process of radiation defect formation], Ekologicheskiy vestnik nauchnykh
tsentrov CHernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of the scientific
centers of the Black Sea Economic Cooperation], 2019, Vol. 16, No. 1, pp. 59-65.
Published
2022-11-01
Section
SECTION III. ELECTRONICS, COMMUNICATIONS AND NAVIGATION