EVALUATION OF THE FUNCTIONAL ELEMENTS INFLUENCE ON THE PARAMETERS OF THE QKD SYSTEM BASED ON B92 PROTOCOL

  • К.Е. Rumyantsev Southern Federal University
  • P.D. Mironova Southern Federal University
  • H.H. Shakir Southern Federal University
Keywords: Quantum key distribution, B92 protocol, energy characteristics, time characteristics, probabilistic characteristics

Abstract

The influence of the parameters of functional elements on the energy, time and probabilistic
characteristics of the quantum key distribution system (QKD) based on the B92 protocol is studied.
The dependences of the probability of writing correct and erroneous bits into a raw quantum
key sequence are plotted for various lengths of a fiber-optic communication line (FOCL) and the
use of various lasers (EML-laser; DFB-laser; VCSEL-laser and FP-laser) and photodetector
modules (id201; id210; id220; id230). Thus, changes in the probability of writing a correct bit into
a raw quantum key sequence are much more significant than changes in the probability of writing
an erroneous bit (50.9 times versus 3.3 times with FWHM=80 pm and a change in the length of
the FOCL from 10 to 100 km). This is due to the fact that with an increase in the length of the
FOCL, the probability of the absence of registration at the receiving station of photons or dark
current pulses (DCP) sharply increases. Numerical material indicates a direct proportional dependence
of the probability of writing an erroneous bit on the frequency of generation of noise
pulses of single-photon avalanche photodiodes (SAPD). So, with an increase in the frequency of
occurrence of DCP by 60 times (from 100 to 6000 Hz), the probability of recording an erroneous
bit also increases by 60 times (for example, with a FOCL length of 100 km – 6.39 versus 383.3).
It has been established that the root-mean-square deviation of the photon delay time is directly proportional to the length of the FOCL and the width of the laser spectrum. With a spectrum width
of FWHM=10 pm and an increase in the FOCL length from 10 to 100 km (by a factor of 10), the
standard deviation of the photon delay time also increases by a factor of 10 (from 4.16 to 41.6 ps).
To achieve the best performance of the QKD system as a whole, it is advisable to use a laser with
a minimum width of the radiation spectrum, for example, an EML-laser. However, EML-lasers are
considered the most complex and expensive of all the considered types of lasers, so the use of
EML-lasers significantly increases the cost of the entire QKD system.

References

1. Scarani V. Quantum Physics: A First Encounter: Interference, Entanglement, and Reality.
Translated by Rachael Thew. Oxford: University Press, Mar 2006, 125 p.
2. Fizika kvantovoy informatsii: Kvantovaya kriptografiya. Kvantovaya teleportatsiya.
Kvantovye vychisleniya [Physics of Quantum Information: Quantum Cryptography. Quantum
teleportation. Quantum computing], ed. by D. Boumeystera, A. Ekerta, A. TSaylingera, transl.
from eng. by S.P. Kulik, E.A. Shapiro. Moscow: Postmarket, 2002, 376 p.
3. Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography, Reviews of Modern Physics,
2002, Vol. 74, No. 1, pp. 145-195.
4. Rostelekom ob"yavil o vnedrenii kvantovoy kriptografii na svoikh setyakh [Rostelecom announced
the introduction of quantum cryptography on its networks]. Available at:
https://tass.ru/ekonomika/5685597 (accessed 17 October 2018).
5. Rumyantsev K.E. Sistemy kvantovogo raspredeleniya klyucha [Systems of quantum key distribution:
monograph]. Taganrog: Izd-voTTI YuFU, 2011, 264 p.
6. Bennett C., Brassard G. Quantum cryptography: Public key distribution and coin tossing. Proceedings
of IEEE international conference on computers, systems and signal processing. Bangalore.
India. New York: Institute of Electrical and Electronics Engineers, 1984, pp. 175-179.
7. Shor P.W., Preskill J. Simple proof of security of the BB84 quantum key distribution protocol.
Physical Review Letters, 2000, Vol. 85, pp. 441-444.
8. Mironov Y.K., Rumyantsev K.E. Single-Photon Algorithm for Synchronizing the System of
Quantum Key Distribution with Polling Sections of a Fiber-Optic Line. Futuristic Trends in
Networks and Computing Technologies, 2020, pp. 87-97. DOI: https://doi.org/10.1007/978-
981-15-4451-4_8.
9. Rumyantsev K.E. Sinhronizatsiya v sisteme kvantovogo raspredeleniya klyucha s
avtomaticheskoy kompensatsiey polyarizatsionnykh iskazheniy [Synchronization in a quantum
key distribution system with automatic compensation of polarization distortions].
Telekommunikatsii [Telecommunications], 2017, No. 2, pp. 32-40.
10. Rumyantsev K.E., Plenkin A.P. Bezopasnost' rezhima sinhronizatsii sistemy kvantovogo
raspredeleniya klyuchey [Security of the synchronization mode of a system of quantum key
distribution]. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences],
2015, No. 5 (166), pp. 135-153.
11. Kurochkin V.L. i dr. Eksperimental'nye issledovaniya v oblasti kvantovoy kriptografii [Experimental
research in the field of quantum cryptography], Fotonika [Photonics], 2012, Vol. 5,
pp. 54-66.
12. Rumyantsev K.E., Plenkin A.P. Sinhronizatsiya sistemy kvantovogo raspredeleniya klyucha pri
ispol'zovanii fotonnykh impul'sov dlya povysheniya zashchishchyonnosti [Synchronization of
the system of quantum key distribution when using photon pulses to increase security].
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 8,
pp. 81-96.
13. Rumyansev K.E., Plenkin A.P. Preliminary Stage Synchronization Algorithm of Autocompensation
Quantum Key Distribution System with an Unauthorized Access Security. International Conference
on Electronics, Information, and Communications (ICEIC), 2016. Vietnam, Danang. pp. 1-4. DOI:
10.1109/ELINFOCOM.2016.7562955. WOS:000389518100035. IDS: BG5KP.
14. Rumyansev K., Rudinsky E. Parameters of the two-stage synchronization algorithm for the
quantum key distribution system. Proceedings of the 10th International Conference on Security
of Information and Networks (SIN’17), 2017, pp. 140-147. DOI: 10.1145/3136825.3136888.
15. Rumyantsev K..E., Shakir H.H. Proektirovanie sistemy kvantovogo raspredeleniya klyucha s
interferometrami Makha-Tsendera: ucheb. posobie [Designing a quantum key distribution system
with Mach-Zehnder interferometers: a tutorial]. Rostov-on-Don; Taganrog: Izd-vo YuFU,
2020, 108 p.
16. Rumyantsev K.E. Kvantovye tekhnologii v telekommunikatsionnyh sistemakh: uchebnik
[Quantum technologies in telecommunication systems: textbook]. Rostov-on-Don; Taganrog:
Izd-vo YuFU, 2021, 346 p.
17. Lazernye diody Fabri-Pero [Fabry-Perot laser diodes]. Available at: http://www.electroncom.ru/
product/nanoplus/fp_diodes.php (accessed 10 January 2022).
18. Poverkhnostno-izluchayushchie lazery s vertikal'nym rezonatorom [Surface-emitting lasers
with a vertical cavity]. Available at: http://msd.com.ua/optoelektronika/poverxnostnoizluchayushhielazery-
s-vertikalnym-rezonatorom-vcsel/ (accessed 10 January 2022).
19. Lazery s vneshnim rezonatorom [External cavity lasers]. Available at:
http://fmnauka.narod.ru/lazery_s_vneshnim_rezonatorom.pdf (accessed 10 January 2022).
20. Osnovnye parametry i sertifikatsiya opticheskikh SFP module [Main parameters and ce rtification
of optical SFP modules]. Available at: https://deps.ua/knowegable-baseru/
articles/1961-osnovnye-parametry-i-sertifikatciia-opticheskikh-sfp-modulei.html (accessed
10 January 2022).
Published
2022-11-01
Section
SECTION I. DATA ANALYSIS AND MODELING