ANALYSIS OF ADVANCED COMPUTER TECHNOLOGIES FOR CALCULATION OF EXACT APPROXIMATIONS OF STATISTICS PROBABILITY DISTRIBUTIONS
Abstract
The paper is devoted to the evaluation of the hardware resource of computer systems for
solving a computational-expensive problem such as calculation of the probability distributions of
statistics by the second multiplicity method based on Δ-exact approximations for samples with a
size of 320-1280 characters and an alphabet power of 128-256 characters, and with an accuracy
of Δ=10-5. The total solution time should not exceed 30 days or 2.592·106 seconds for 24/7 computing.
Owing to the use of the properties of the second multiplicity method, the computational complexity
of the calculations can be brought to the range of 9.68·1022-1.60·1052 operations with the
number of tested vectors of 6.50·1023-1.39·1050. The solution of this problem for the specified parameters
of samples during the given time requires the hardware resource which cannot be provided
by modern computer means such as processors, graphics accelerators, programmable logic
integrated circuits. Therefore, in the paper we analyze the possibilities of promising quantum and
photon technologies for solving the problem with the given parameters. The main advantage of
quantum computer systems is the high speed of calculations for all possible parameter values.
However, quantum acceleration will not be achieved to calculate the probability distributions of
statistics due to the need to check all the obtained solutions. Here, the number of obtained solutions
corresponds to the dimension of the problem. In addition, due to the current development
level of the quantum hardware components, it is impossible to create and use the 120-qubit quantum
computers for the solution of the considered problem. Photon computers can provide high
computation speed at low power consumption and require the smallest number of nodes to solve
the considered problem. However, unsolved problems with the physical implementation of efficient
memory elements and the lack of available hardware components make the use of photon computer
technologies impossible for calculation of the probability distributions of statistics in the near
future (5-7 years). Therefore, it is most reasonable to use hybrid computer systems containing
nodes of different architectures. To solve the problem on various hardware platforms (generalpurpose
processors, GPUs, FPGAs) and configurations of hybrid computer systems, we suggest to
use an architecture independent high-level programming language SET@L. The language combines
the representation of calculations as sets and collections (based on the alternative set theory
of P. Vopenka), the absolutely parallel form of the problem represented as an information graph,
and the paradigm of aspect-oriented programming.
References
additivno razdelyaemykh statistik i oblast' primeneniya predel'nykh raspredeleniy [The complexity
of calculating the exact probability distributions of symmetric additively separable statistics
and the scope of marginal distributions], Doklady TUSUR [TUSUR reports]. Tomsk,
2017, Vol. 20, No. 4, pp. 126-130. ISSN 1818-0442.
2. Mel'nikov A.K., Levin I.I., Dordopulo A.I., Pisarenko I.V. Analiz vozmozhnostey sovremennykh
vychislitel'nykh tekhnologiy dlya rascheta tochnykh priblizheniy raspredeleniy
veroyatnostey znacheniy statistik [Analysis of the possibilities of modern computing technologies
for calculating accurate approximations of probability distributions of statistical values],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2021, No. 7
(224), pp. 6-19. ISSN 1999-9429. DOI: 10.18522/2311-3103-2021-7-6-19.
3. Timonin V.I., Chernomordik O.M. Metod vychisleniya tochnogo raspredeleniya statistik tipa
Kolmogorova-Smirnova pri al'ternativakh Lemana [A method for calculating the exact distribution
of Kolmogorov-Smirnov type statistics with Lehman alternatives], Teoriya
veroyatnostey i ee primenenie [Probability theory and its application], 1985, Vol. 30, Issue 3,
pp. 572-573.
4. Tyannikova N.D, Timonin V.I. Metod vychisleniya tochnykh raspredeleniy statistik tipa
Kolmogorova-Smirnova v sluchae narusheniya odnorodnosti i nezavisimosti analiziruemykh
vyborok [Method for calculating exact distributions of Kolmogorov-Smirnov type statistics in case
of violation of uniformity and independence of the analyzed samples], Nauka i obrazovanie [Science
and Education], 2014, No. 11, pp. 227–237. DOI: 10.7463/1114.0740251 ISSN 1994-0448.
5. Raschet raspredeleniy metodom Monte-Karlo [Calculation of distributions by the Monte Carlo
method].
6. Feynman R.P. Simulating physics with computers, International Journal of Theoretical Physics,
1982, Vol. 21, Iss. 6, pp. 467-488. DOI: 10.1007/BF02650179.
7. Benioff P. Quantum mechanical hamiltonian models of turing machines, Journal of Statistical
Physics, 1982, Vol. 29, No. 3, pp. 515-546. DOI: 10.1007/BF01342185. Bibcode:
1982JSP....29..515B.
8. Valiev K.A., Kokin A.A. Kvantovye komp'yutery: nadezhdy i real'nost' [Quantum computers:
Hopes and Reality]. Izhevsk: RKHD, 2004, 320 p.
9. Manin Yu.I. Vychislimoe i nevychislimoe [Computable and non–computable]. Moscow: Sov.
radio, 1980, 128 p. (Cybernetics).
10. Moren K. Metody gil'bertova prostranstva [Methods of Hilbert space]. Moscow: Mir, 1965,
570 p.
11. Fiziki iz Rossii i SSHA sozdali pervyy 51-kubitnyy kvantovyy komp'yuter [Physicists from
Russia and the USA have created the first 51-qubit quantum computer]. Available at:
https://ria.ru/20170714/1498476410.html? (accessed 2 May 2022).
12. Kak Rossiya potratit 15 mlrd. na sozdanie kvantovogo komp'yutera [How will Russia spend 15
billion? to create a quantum computer]. Available at: https://gov.cnews.ru/articles/2020-01-
9_kak_rossiya_potratit_15_mlrd_na_sozdanie? (accessed 2 May 2022).
13. IonQ zayavila o sozdanii samogo moshchnogo v mire kvantovogo komp'yutera [IonQ has
announced the creation of the world's most powerful quantum computer]. Available at:
https://3dnews.ru/1060908/kompaniya-ion-q-soobshchila-o-sozdanii-samogo-moshchnogo-vmire-
kvantovogo-kompyutera? (accessed 2 May 2022).
14. IBM prodemonstrirovali kvantovyy komp'yuter s «kvantovym ob"emom» 64. Available at:
https://habr.com/ru/company/raiffeisenbank/news/t/516062/? (accessed 2 May 2022).
15. Stepanenko S.A. Fotonnaya vychislitel'naya mashina. Printsipy realizatsii. Otsenka parametrov [Photonic
computing machine. Principles of implementation. Estimation of parameters], Vychislitel'naya
tekhnika. Doklady Akademii nauk [Computer engineering. Reports of the Academy of Sciences].
Moscow, 2017, Vol. 476, No. 4, pp. 389-394. DOI: 10.1134/S1064562417050234.
16. Stepanenko S.A. Fotonnyy komp'yuter: struktura i algoritmy, otsenka parametrov [Photonic
computer: structure and algorithms, estimation of parameters], Fotonika [Photonics], 2017,
No. 7 / 67, pp. 72-83. DOI: 10.22184/1993-7296.2017.67.7.72.83.
17. Stepanenko S.A. Interferentsionnye logicheskie elementy [Interference logic elements], presented
by Academician of the Russian Academy of Sciences Yu.A. Trutnev. Doklady
Akademii nauk. Matematika, informatika, protsessy upravleniya [Reports of the Academy of
Sciences. Mathematics, Computer Science, Management processes]. Moscow, 2020, Vol. 493,
pp. 64-69. DOI: 10.31857/S2686954320040189.
18. Soifer V.A., Kharitonov S.I., Khonina S.N. etc. Spiral caustics of vortex beams, Photonics,
2021, Vol. 8, Issue 1, pp. 1-20. DOI: 10.3390/photonics8010024.
19. Soifer V.A., Doskolovich L.L., Bezus E.A. etc. Spatial differentiation of optical beams using a
resonant metal-dielectric-metal structure, Journal of Optics, 2021, Vol. 23, Issue 2.
DOI: 10.1088/2040-8986/abe63b.
20. Soifer V.A., Doskolovich L.L., Bezus E.A. etc. An Optical Differentiator Based on a Three-
Layer Structure with a W-Shaped Refractive Index Profile, Journal of Experimental and Theoretical
Physics, 2018, Vol. 127, Issue 2, pp. 202-209. DOI: 10.1134/S1063776118080174.
21. Levin I.I., Mel'nikov A.K. Upravlenie gibridnymi vychislitel'nymi sistemami na yazyke
SET@L [Management of hybrid computing systems in the SET@L language], Materiály XI
mezinárodní vědecko-praktická konference «Aktuální vymoženosti vědy – 2015» Díl 7.
Moderní informační technologie [Materials XI international scientific and practical conference
"current achievements of science-2015" Part 7. Modern information technology"]. Praha. Publishing
House «Education and Science», 2015. – 96 s. – P. 23-28. – ISSN 978-966-8736-05-6.
22. Levin I.I., Dordopulo A.I., Pisarenko I.V., Mel'nikov A.K. Podkhod k arkhitekturnonezavisimomu
programmirovaniyu vychislitel'nykh sistem na osnove aspektnoorientirovannogo
yazyka Set@l [Approach to architecture-independent programming of computing
systems based on aspect-oriented language Set@l], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2018, No. 3, pp. 46-58.
23. Safonov V.O. Using Aspect-Oriented Programming for Trustworthy Software Development.
New York: John Wiley & Sons, 2008, 352 p.
24. Vopenka P. Al'ternativnaya teoriya mnozhestv: Novyy vzglyad na beskonechnost' [Alternative
Set Theory: A New View of Infinityъ: Transl. from Slavack. Novosibirsk: Izd-vo Instituta
matematiki, 2004, 612 p.
25. Levin I.I., Dordopulo A.I., Pisarenko I.V., Mel'nikov A.K. Opisanie algoritma resheniya sistem
lineynykh algebraicheskikh uravneniy metodom Yakobi na yazyke arkhitekturnonezavisimogo
programmirovaniya Set@l [Description of the algorithm for solving systems of
linear algebraic equations by the Jacobi method in the language of architecture-independent
programming Set@l], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2018, No. 5, pp. 34-48.
26. Levin I.I., Dordopulo A.I., Pisarenko I.V., Mel'nikov A.K. Arkhitekturno-nezavisimaya programma
bystrogo preobrazovaniya Fur'e na yazyke programmirovaniya SET@L [An architectureindependent
fast Fourier transform program in the SET@L programming language], Vestnik
RGRTU [Vestnik of RSREU], 2019, No. 68, pp. 28-36. ISSN 1995-4565. DOI: 10.21667/1995-
4565-2019-68-2-28-36. Available at: http://vestnik.rsreu.ru/ru/archive/2019/vypusk-68/805-1995-
4565-2019-68-2-28-36.