IMPLEMENTATION OF RELATIONAL DEVICES OF DIGITAL SIGNALS MONITORING AND POLLING IN THE FPGA BASIS

  • S.А. Panychev Southern Federal University
  • А.I. Panychev Southern Federal University
  • А.V. Maksimov Southern Federal University
Keywords: Technical functional diagnostics, ordinal logic, variable priority, FPGA

Abstract

The requirements for modern means of technical control and functional diagnostics of
equipment for critical applications are formulated, one of which is the processing of diagnostic
information at a real-time pace. It is noted that for working with digital diagnostic signals, relational monitoring polling devices based on the apparatus of ordinal logic, which gives a significant
time gain over traditional binary logic, are promising. The hardware implementation of ordinal-
logical polling devices in the FPGA basis, along with the obvious advantages of the development
stage, will allow for operational reconfiguration of the internal structure to adapt to the
changing operating conditions of the control object. The hardware implementation of two known
devices is considered. A variable priority device is used to identify the sensor that has detected a
failure or malfunction, with the possibility of setting the sensor number from which the survey will
begin, and the direction of traversing the sensor tuple. The device of centralized control of a group
of objects is used to search for an extreme (maximum or minimum) digital diagnostic signal with
simultaneous determination of the number of the corresponding sensor in one clock cycle of the
monitoring and diagnostic system. The development of combinational data schemes of monitoring
survey devices was carried out by means of ISE Design Suite 14.7. The positive results of testing
the algorithms of the created models are presented, summarized in tables of the states of the inputs
and outputs of the circuits and illustrated by time diagrams of binary signals at the terminals of
the circuits. An estimate of the required FPGA resource costs is given, expressed in the number of
logical elements and user contacts. Also, using the example of low integration devices and the
most resource-intensive samples, the upper and lower estimates of the number of FPGAs of various
types of the Xilinx Spartan-6, Xilinx Virtex-4 families and the domestic 5576/5578 series of
JSC KTC Electronics are given. It is established that with the number of diagnostic sensors up to
200, depending on the FPGA family, up to 17 low integration chips and up to 7 resource-intensive
chips are required to implement one monitoring polling device.

References

1. Shcherbakov N.S., Samharadze T.G., Rybin V.M. Postroenie universal'noy vstroennoy
ierarkhicheskoy sistemy diagnostirovaniya slozhnykh radioelektronnykh kompleksov [Construction
of a universal integrated hierarchical system for diagnosing complex radioelectronic
complexes], Pribory i sistemy. Upravlenie, kontrol', diagnostika [Devices and systems. Management,
control, diagnostics], 2012, No. 4, pp. 46-50.
2. Fedoseev E.P. Osnovnye tekhnologii sozdaniya vysokonadezhnykh bortovykh vychislitel'nykh
system [Basic technologies for creating highly reliable onboard computing systems], Trudy
GosNIIAS. Voprosy avioniki [Proceedings of GosNIIAS. Avionics issues], 2015, Issue 3, pp. 3-15.
3. Hahn M., Elsner G. Advanced Integrated Control and Data Systems for Constellation Satellites,
MAPLD International Conference. NASA Office of Logic Design, Washington,
USA. 2002, pp. 217-225.
4. Hayden S., Christa S., Shulman S. Advanced Diagnostic System on Earth Observing One,
American Institute of Aeronautics and Astronautics, 2005.
5. Mirko Jakovlievic, Complexity Design Considerations for Integrated Modular Avionics. Civil
Avionics International Forum, China. April, 2014.
6. Shelton C., Koopman P., Nace W. A Framework for Scalable Analysis and Design of System-
Wide Graceful Degradation in Distributed Embedded Systems, Eighth IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2003): Guadelajare
(Mexico), Jan. 2003. Guadelajare, 2003, pp. 8.
7. Eveleens Rene L.C. Open Systems Integrated Modular Avionics – The Real Thing Mission
Systems Engineering, Educational Notes RTO-EN-SCI-176, 2006. Neuilly-sur-Seine, November,
France? RTO, Paper 2, pp. 2-1-2-22.
8. Fedosov E.A. IMA Russian Program – Overall presentation, European and Russian Joint Avionics
Forum, Moscow, 2009, 15 p.
9. Kofanov Yu.N., Sotnikova S.Yu. Virtual'noe modelirovanie fizicheskikh protsessov v
kosmicheskoy apparature pri postroenii kiberneticheskkih sistem [Virtual modeling of physical
processes in space equipment in the construction of cybernetic systems], Aviakosmicheskoe
priborostroenie [Aerospace instrumentation], 2018, No. 4, pp. 36-44.
10. Wah B.W. Wiley Encyclopedia of Computer Science and Engineering, Vol. 1. Wileyinterscience,
2008.
11. Zakharov N.A., Klepikov V.I., Podkhvilin D.S. Upravlenie izbytochnost'yu setevykh
raspredelennykh sistem neobsluzhivaemoy avioniki [Redundancy management of network distributed
systems of unattended avionics], Aviakosmicheskoe priborostroenie [Aerospace instrumentation],
2018, No. 3, pp. 3-12.
12. Vagin V.N., Os'kin P.V. Mnogoagentnaya modeliruyushchaya podsistema kompleksov
diagnostiki na osnove modeley ustroystv [Multi-agent modeling subsystem of diagnostic complexes
based on device models], Izvestiya RAN. Teoriya i sistemy upravleniya [Izvestiya RAS.
Theory and control systems], 2006, No. 6, pp. 131-144.
13. Bakulin V.N., Malkov S.Yu., Goncharov V.V. Kovalev V.I. Upravlenie obespecheniem stoykosti
slozhnyyh tekhnicheskih system [Stability assurance management of complex technical systems].
Moscow: Fizmatlit, 2006.
14. Sergey Panychev, Vyacheslav Guzik, Anatoly Samoylenko, Andrey Panychev, The prerequisites
of forming a risk management system in the design of facilities space application,
MATEC Web of Conferences 102, 01030 (2017) V International Forum for Young Scientists
«Space Engineering». DOI: 10.1051/matecconf/201710201030/.
15. Samoilenko A.P., Panychev A.I., Panychev S.A. Statistical Diagnostics of Irreversible Avionics As a
Controlled Random Process, 2016 International Siberian Conference on Control and Communications
(SIBCON). Proceedings. Moscow: National Research University "Higher School of Economics",
Russia, Moscow, May 12−14, 2016. DOI: 10.1109/SIBCON.2016.7491722.
16. Samoylenko A.P., Panychev A.I., Panychev S.A. Sintez kontrollera vneshnikh preryvaniy s
dinamicheski izmenyaemym prioritetom [Synthesis of an external interrupt controller with a
dynamically variable priority], Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh
sistem. 2016: Sb. trudov [Problems of developing promising micro- and nanoelectronic systems.
2016. Collection of works], pod obshch. red. akademika RAN A.L. Stempkovskogo.
– Moscow: IPPM RAS, 2016. Part II, pp. 212-219.
17. Kon E.L., Freiman V.I. Podkhody k testovomu diagnostirovaniyu tsifrovykh ustroystv [Approaches
to test diagnostics of digital devices], Vestnik Permskogo natsional'nogo
issledovatel'skogo politekhnicheskogo universiteta [Bulletin of Perm National Research Polytechnic
University], 2012, No. 6, pp. 231-241.
18. Kiselev V.V., Suvorov N.A. Metod diagnostiki tsifrovyh skhem s programmiruemymi PLIS na etape
izgotovleniya [Diagnostic method of digital circuits with programmable FPGAs at the manufacturing
stage], Vestnik Permskogo natcional'nogo issledovatel'skogo politekhnicheskogo universiteta
[Bulletin of Perm National Research Polytechnic University], 2015, No. 14, pp. 97-107.
19. Samoylenko A.P., Samoylenko I.A., Yatsko F.G. Ustroystvo peremennogo prioriteta [Device of
variable priority], SU No. 1383353. A1, A.S. USSR. GO6F 9/46, Bulletin No. 11, 1988.
20. Samoylenko A.P., Usenko O.A. Sposob tsentralizovannogo kontrolya N ob"ektov [Method of centralized
control of N objects], Patent No. 2198418 RU, 7G 05 B2 3/02, Bulletin No. 4, 2003.
21. Telec V., Cybin S., Bystrickij A., Pod"yapol'skij S. PLIS dlya kosmicheskikh primeneniy.
Arkhitekturnye i skhemotekhnicheskie osobennosti [FPGA for space applications. Architectural
and circuit design features], Elektronika: nauka, tekhnologiya, biznes [Electronics: Science,
technology, business], 2005, No. 6(64), pp. 44-49.
22. Available at: https://www.xilinx.com/ (accessed 20 June 2022).
23. Available at: https://www.edc-electronics.ru/ (accessed 20 June 2022).
Published
2022-08-09
Section
SECTION IV. ELECTRONICS, NANOTECHNOLOGIES AND INSTRUMENTATION