SELECTION OF THE SENSOR CONVERSION CHARACTERISTIC MODEL FOR CONTROLLING THE ERROR IN THE MEASUREMENT OF PHYSICAL QUANTITIES

  • S.I. Klevtsov Southern Federal University
Keywords: Model, microprocessor sensor, conversion function, error, approximation

Abstract

On the example of a pressure sensor, the problem of selecting a model and parameters of
the conversion function of a microprocessor sensor is considered. The conversion function is
based on a mathematical model that associates the electrical signal coming from the sensor's
measuring transducer with the value of a physical quantity. The model of the conversion function
of a microprocessor sensor must repeat the real spatial dependence of the electrical signal on the
measured value and take into account the influence of external factors, such as temperature. Microprocessor
sensors are used to measure the parameters of an object with a given accuracy. The
main contribution to the measurement error is made by the inaccuracy of the approximation of the
real transformation function by its model. The need to achieve the optimal level of parameter
measurement error in the system, taking into account the complexity and cost of measurements,
requires the control of the sensor error. For this purpose, various models and methods of approximation
are presented. For efficient error control, a method of multi-segment spatial approximation
based on models of linear or non-linear spatial elements is proposed. The error control procedure
is formulated. The procedure for using the model of multi-segment spatial approximation
of the transformation characteristic for pressure calculations taking into account the influence of
temperature is based on the combined use of linear and non-linear spatial elements within the
same model. The segment type selection procedure should begin with an assessment of the possibility
of using a linear spatial element first, and if it is impossible to meet the accuracy requirements,
an analysis of the use of a non-linear element. The method allows you to change the types
and configuration of spatial elements and in this way influence the measurement error. The advantages
of this approach are confirmed by the simulation results.

References

1. Hillea P., Höhlera R., Stracka H. A Linearisation and Compensation Method for Integrated
Sensors, Sensors and Actuators A: Physical, 1994, Vol. 44, Issue 2, pp. 95-102.
2. Bobrovnikov N.R., YArkin S.V., Gridin Yu.N., Strygin V.D., Chertov E.D. Matematicheskoe
obespechenie mikroprotsessornykh preobrazovateley analogovykh pnevmaticheskikh signalov
[Mathematical support of microprocessor converters of analog pneumatic signals], Pribory i
sistemy. Upravlenie, kontrol', diagnostika [Devices and systems. Management, control, diagnostics],
2002, No. 2, pp. 36-39.
3. Bartkovjak J., Karovičová M. Approximation by Rational Functions, Measurement Science
Review, 2001, Vol. 1, No. 1, pp. 63-65.
4. Gutnikov V.S. Tendentsii razvitiya elektronnykh izmeritel'nykh preobrazovateley dlya
datchikov [Trends in the development of electronic measuring transducers for sensors],
Pribory i sistemy upravleniya [Instruments and control systems], 1990, No. 10, pp. 32-35.
5. Bluemm C. Weiss R. Weigel R. Brenk D. Correcting nonlinearity and temperature influence of
sensors through B-spline modeling, Industrial Electronics (ISIE). IEEE International Symposium.
4-7 July 2010, pp. 3356-3361.
6. Gorbunov S.F., Tsypin B.V. Linearization of calibration characteristics of capacitance pressure
sensors, Measurement Techniques, 2011, Vol. 53, No. 10, pp. 1113-1117.
7. Patra J.C. Chakraborty G. Meher P.K. Neural-Network-Based Robust Linearization and Compensation
Technique for Sensors Under Non-linear Environmental Influences, IEEE Transactions
on Circuits and Systems I: Regular Papers, 2008, Vol. 55, Issue 5, pp. 1316-1327.
8. Mukhataev N.A. Algoritm linearizatsii i temperaturnoy kompensatsii kharakteristik
preobrazovateley [Algorithm of linearization and temperature compensation of converter characteristics],
Mater. Tret'ey nauchno-prakticheskoy konferentsii «Perspektivnye sistemy i
zadachi upravleniya» [Materials of the Third scientific and practical conference "Perspective
systems and control tasks"], Vol. 2. Taganrog: TTI YuFU, 2008, pp. 74-76.
9. Klevtsov S.I., Lin'kov V.S. Prostranstvennaya approksimatsiya graduirovochnoy kharakteristiki
datchika davleniya [Spatial approximation of the calibration characteristic of the pressure sensor],
Mater. mezhdunarodnoy nauchnoy konferentsii "Analiz i sintez kak metody nauchnogo
poznaniya» [Materials of the international scientific conference "Analysis and synthesis as
methods of scientific cognition"]. Part 2. Taganrog: Izd-vo "Anton", TRTU, 2004, pp. 8-15.
10. Shaponich D., Zhigich A. Korrektsiya p'ezorezistivnogo datchika davleniya s ispol'zovaniem
mikrokontrollera [Correction of a piezoresistive pressure sensor using a microcontroller], Pribory
i tekhnika eksperimenta [Instruments and experimental techniques], 2001, No. 1, pp. 54-60.
11. Klevtsov S.I. Prostranstvenno-polinomial'nye modeli approksimatsii graduirovochnoy
kharakteristiki intellektual'nogo datchika [Spatial-polynomial models of approximation of the
calibration characteristic of an intelligent sensor], Tr. mezhdunarodnykh nauchnotekhnicheskikh
konferentsiy "Intellektual'nye sistemy" (IEEE AIS'04) i "Intellektual'nye SAPR"
(CAD-2004). Nauchnoe izdanie 3-kh t. T. 2 [.Proceedings of the international scientific and
technical conferences "Intelligent Systems" (IEEE AIS'04) and "Intelligent CAD" (CAD-
2004). Scientific publications in 3 vol. Vol. 2]. Moscow: Izd-vo fiziko-matematicheskoy
literatury, 2004, pp. 309-314.
12. Klevtsov S.I. Modeli i metody postroeniya pretsizionnykh graduirovochnykh kharakteristik
intellektual'nykh datchikov davleniya [Models and methods for constructing precision calibration
characteristics of intelligent pressure sensors], Izvestiya TRTU [Izvestiya TSURE], 2007,
No. 3, pp. 110-118.
13. Klevtsov S.I., Klevtsova A.B. Mul'tisegmentnaya prostranstvennaya model' graduirovochnoy
kharakteristiki intellektual'nogo datchika [Multi-segment spatial model of the calibration characteristics
of an intelligent sensor], Mater. mezhdunarodnoy nauchnoy konferentsii "TSifrovye
metody i tekhnologii" [Materials of the international scientific conference "Digital methods
and technologies"]. Part 4. Taganrog: Izd-vo "Anton", TRTU, 2005, pp. 21-26.
14. P'yavchenko O.N., Mokrov E.A., Panich A.E., Klevtsov S.I., P'yavchenko A.O., Fedorov A.G.,
Udod E.V. Metody, modeli, algoritmy i arkhitektura pretsizionnykh intellektual'nykh
datchikov davleniya [Methods, models, algorithms and architecture of precision intelligent
pressure sensors]. Taganrog: Izd-vo TTI YuFU, 2007, 130 p.
15. Klevtsov S.I. Osobennosti primeneniya modeley graduirovochnykh kharakteristik datchikov
davleniya [Features of application of models of calibration characteristics of pressure sensors],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2008, No. 1
(78), pp. 25-26.
16. Klevtsov S.I., Udod E.V. Prostranstvennaya ploskostnaya model' graduirovochnoy
kharakteristiki intellektual'nogo datchika davleniya [Spatial planar model of the calibration
characteristics of an intelligent pressure sensor], Izvestiya TRTU [Izvestiya TSURE], 2005,
No. 1, pp. 99-107.
17. P'yavchenko O.N. Klevtsov S.I. Povyshenie tochnosti obrabotki rezul'tatov izmereniya v
intellektual'nykh datchikakh–izmeritelyakh fizicheskikh signalov [Improving the accuracy of
processing measurement results in intelligent sensors–meters of physical signals], Elektronika
i sistemy upravleniya [Electronics and control systems], 2006, No. 1, pp. 16-21.
18. Semenov L.A., Siraya T.N. Metody postroeniya graduirovochnykh kharakteristik sredstv
izmereniy [Methods of construction of calibration characteristics of measuring instruments].
Moscow: Izd-vo standartov, 1986.
19. Klevtsov S.I. Mul'tisegmentnaya prostranstvennaya approksimatsiya graduirovochnoy
kharakteristiki mikroprotsessornogo datchika [Multi-segment spatial approximation of the calibration
characteristic of a microprocessor sensor], Metrologiya [Metrology], 2011, No. 7,
pp. 26-36.
20. Klevtsov and Y. Udod. Model of the Spatial Conversion Characteristics for Graduation of the
Microprocessor-Based Sensor’s with Indemnification of Influence Destabilizing Factors, Proc.
2015 International Siberian Conference on Control and Communications (SIBCON), 2015, pp.
1-5. DOI: 10.1109 / SIBCON.2015.7147097.
Published
2022-08-09
Section
SECTION III. SIMULATION OF PROCESSES AND SYSTEMS