ANALYTICAL REDUNDANCY IN THE AUTOMATIC CONTROL SYSTEM OF AN AIRCRAFT TURBOJET BYPASS ENGINE BASED ON OPTIMAL OBSERVERS
Abstract
An analytical redundancy in the automatic control system of a bypass turbojet engine
(ACS turbofan engine) based on optimal observers is proposed. This article is based on previously
obtained results in previous author's works and is a generalization and analysis of these results in
order to develop a methodology for improving the fault tolerance of ACS turbofan engines. This
method is based on the use of optimal observers: the Kalman filter and the Yazvinsky filter, consistent
with the mathematical model of the ACS turbofan engine. The analysis of the mathematical model of
the ACS was carried out using the least squares method in a moving window. The accuracy of identification
of the mathematical model and the required delay time are ensured by optimizing the width
of the moving window. Estimated with the help of optimal observers, the output vector of the ACS
turbofan engine includes the following parameters: the rotor speed of the low-pressure compressor
rotor nв, the rotor speed of the high-pressure compressor nk, the air pressure behind the highpressure
compressor PK, the gas temperature behind the low-pressure turbine TT. When modeling the
Kalman filter, a correlation analysis of the input signals was preliminarily carried out. The rationale
for the advantage of the adaptive Yazvinsky filter compared to the Kalman filter is given. The results
of mathematical modeling of the algorithmic method of reserving the measurement channel of the
ACS turbofan engine based on the data of flight tests of a bypass engine of the PS-90A type as part of
the main narrow-body aircraft TU-214 both in stationary and transient modes are presented. Statistical
analysis of errors in estimation of the output vector of ACS turbofan engines based on the Kalman
and Yazvinsky filter has been carried out. It is shown that the proposed analytical redundancy algorithm
ensures the fulfillment of the requirements for the accuracy and stability of estimates of the
output vector of ACS turbofan engines when using the Yazvinsky filter and can be recommended for
use in advanced ACS turbofan engines. Based on the results proposed redundancy method, a direction
for further research has been formed.
References
dvigatel' PS-90A [Aviation engine PS-90A], ed. by A.A. Inozemtseva. Moscow: Libra-K,
2007, 320 p.
2. Brammer K., Ziffling G. Fil'tr Kalmana-B'yusi. Determinirovannoe nablyudenie i
stokhasticheskaya fil'tratsiya [Kalman-Bucy filter. Deterministic observation and stochastic
filtering]. Moscow: Nauka, 1982, 199 p.
3. Izerman R. Tsifrovye sistemy upravleniya [Digital control systems]. Moscow: Mir, 1984, 541 p.
4. Inozemtsev A.A., Lamanova N.G., Sazhenkov A.N., Lisovin I.G., Gribkov I.N., Pleshivykh A.S.
Sintez optimal'nogo nablyudatelya, soglasovannogo s matematicheskoy model'yu SAU TRDD
[Synthesis of an optimal observer consistent with the mathematical model of the ACS turbojet
engine], Vestnik PNIPU. Aerokosmicheskaya tekhnika [PNRPU Aerospace Engineering
Bulletin], 2019, No. 57, pp. 162-171.
5. Rivkin S.S. Metod optimal'noy fil'tratsii Kalmana i ego primenenie v inertsial'nykh
navigatsionnykh sistemakh. Ch. 2. Ispol'zovanie fil'trov kalmana v inertsial'nykh
navigatsionnykh sistemakh [The method of optimal Kalman filtering and its application in inertial
navigation systems. Part 2. The use of Kalman filters in inertial navigation systems].
Sudostroenie, 1974, 156 p.
6. Lamanova N.G. Pleshivykh A.S. Gribkov I.N. Fatykov A.I. Identifikatsiya matematicheskoy
modeli sistemy avtomaticheskogo upravleniya gazoturbinnogo dvigatelya [Identification of the
mathematical model of the automatic control system of a gas turbine engine], Vestnik PNIPU.
Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya [PNRPU Bulletin.
Electrotechnics, Informational Technologies, Control Systems], 2019, No. 31, pp. 121-135.
7. Inozemtsev A.A., Lamanova N.G., Sazhenkov A.N., Gribkov I.N., Pleshivykh A.S. Sintez
optimal'nogo nablyudatelya pri otsutstvii apriornoy informatsii o kharakteristikakh shuma
vozmushcheniya sistemy avtomaticheskogo upravleniya i kontrolya turboreaktivnogo
dvukhkonturnogo dvigatelya [Synthesis of an optimal observer in the absence of a priori information
about the noise characteristics of the disturbance of the automatic control and control
system of a turbojet two-circuit engine], Vestnik PNIPU. Aerokosmicheskaya tekhnika
[PNRPU Aerospace Engineering Bulletin], 2020, No. 63, pp. 70-79.
8. Avgustinovich V.G., Akindinov V.A. Identifikatsiya sistem upravleniya aviatsionnykh
gazoturbinnykh dvigateley [Identification of control systems of aviation gas turbine engines].
Moscow: Mashinostroenie, 1984, 196 p.
9. Ferster E., Rents B. Metody korrelyatsionnogo i regressionnogo analiza Rukovodstvo dlya
ekonomistov [Methods of correlation and regression analysis A guide for economists]: transl.
from germ. and preface V.M. Ivanovoy. Moscow: Finansy i statistika, 1983, 304 p.
10. Linnik Yu.V. Metod naimen'shikh kvadratov i osnovy matematiko-statisticheskoy teorii
obrabotki nablyudeniy [The method of least squares and the foundations of the mathematical
and statistical theory of observation processing]. Moscow: Fizmatgiz, 1958, 334 p.
11. Kalman R. A new approach to linear filtering and prediction problems, Transactions of American
society of mechanical engineers, Journal of basic engendering, 1960, Vol. 82, pp. 35-46.
12. Kalman R., Bucy R. New Results in Linear Filtering and Prediction Theory, Transactions of
the American society of mechanical engineers, Journal of basic engendering, 1961, Vol. 83,
pp. 95-108.
13. Jazwinski A.H. Stochastic Processes and Filtering Theory. New York: academic press, 1970,
376 p.
14. Medich D. Statisticheskie optimal'nye lineynye otsenki i upravlenie [Statistical optimal linear
estimates and control], ed. by A.S. Shatalova. Moscow: Energiya, 1973, 440 p.
15. Lamanova N.G. Adaptivnoe otsenivanie vektora vykhoda SAU GTD [Adaptive estimation of
the ACS GTD output vector], Vestnik PGTU. Ae-rokosmicheskaya tekhnika [Bulletin of
PSTU. Aerospace engineering], 2000, No. 4, pp. 37-42.
16. Inozemtsev A.A., Nikhamkin M.A., Sandratskiy V.L. Osnovy konstruirovaniya aviatsionnykh
dvigateley i energeticheskikh ustanovok. T. 1. Obshchie svedeniya. Osnovnye parametry i
trebovaniya. Konstruktivnye i silovye skhemy: uchebnik [Fundamentals of the design of aircraft
engines and power plants. Vol. 1. General information. Basic parameters and requirements.
Constructive and power circuits: textbook]. Moscow: Mashinostroenie, 2008, 208 p.
17. Koshcheev A.B., Platonov A.A., Khabrov A.V. Aerodinamika samoletov semeystva Tu-
204/214: ucheb. posobie [Aerodynamics of Tu-204/214 family aircraft: textbook]. Moscow:
OAO «Tupolev», Izd-vo «Poligon-Press», 2009, 304 p.
18. Tatarnikov Oleg. Obzor programm dlya simvol'noy matematiki → Al'ternativnye pakety
[Overview of programs for symbolic mathematics → Alternative packages], Komp'yuterPress
[ComputerPress], 2006, No. 7.
19. Pleshivykh A.S. Zaborskikh A.A. Fatykov A.I. Stend dlya ispytaniy elektronnoy chasti sistem
avtomaticheskogo upravleniya gazoturbinnogo dvigatelya [Test bench for electronic part of
automatic control systems of a gas turbine engine], Vestnik PNIPU. Elektrotekhnika,
informatsionnye tekhnologii, sistemy upravleniya [PNRPU Bulletin. Electrotechnics, Informational
Technologies, Control Systems], 2017, No. 22, pp. 90-102.
20. Sizikov V.S. Ustoychivye metody obrabotki rezul'tatov izmereniy: ucheb. posobie [Sustainable
methods of processing measurement results: a textbook]. Saint Petersburg: SpetsLit, 1999, 240 p.