A HYBRID CONTROL SYSTEM OF MOVEMENT OF UNMANNED VESSEL TO A GIVEN POINT

  • V.K Pshikhopov R&D Institute of Robotics and Control Systems
  • M.Y. Medvedev R&D Institute of Robotics and Control Systems
  • V.V. Solovjev R&D Institute of Robotics and Control Systems
Keywords: Movement control, unmanned vessel, homing, terminal control, obstacle avoiding, fuzzy logics, hybrid control system

Abstract

The aim of the study is elaboration of control algorithms for an unmanned vessel movement in uncertain environments. The mathematical model of the unmanned vessel is based on the equa-tions of motion of a solid body. In the article three modes of movement are considered. The first mode is a terminal movement to a given point. The second mode is homing in a given area of the point. The third mode is obstacle avoiding. It is necessary to ensure smooth transients. Base multi-mode controller is designed by the position-path attitude of a movement control. In this study a novel algorithm of the references calculation is proposed. The algorithm changes the mode in a planning level. The low level single controller is used for the considered modes of a vessel motion. In the mode of terminal control a vessel velocity reference is calculated as function of the distance to the homing point and the given time of movement. A problem of terminal control is solved as a problem of weak terminal control. A weak terminal control problem introduces the error of a vessel homing. This error eliminates a singularity at the homing point. In the homing mode the vessel velocity reference is calculated as function of the distance to the homing point. The vessel velocity reference is the proportional function of the distance to the homing point. In the obstacle avoiding mode the vessel yaw is corrected by additional component. This component is solution of the addi-tional differential equation. The solution is stable if distance from the vessel to the obstacle is more than the safety distance. The solution is unstable if distance from the vessel to the obstacle is less than the safety distance. Composition of the different modes is made by fuzzy logics algo-rithms. Developed fuzzy logics based algorithms smooth the transients, and eliminate the singular-ity at the homing point. Asymptotical stability of the origin of the closed control system is proved. Presented results are demonstrated by simulation. Developed algorithms are implemented in the control system of mini vessel.

References

1. Klinger W.B., Bertaska I.R., Ellenrieder K.D., and Dhanak M.R. Control of an Unmanned Surface Vehicle With Uncertain Displacement and Drag // IEEE Journal of Oceanic Engineer-ing. – 2017. – Vol. 42 (2). – P 458-476.
2. Liu Z., Zhang Y., Yu X., Yuan C. Unmanned surface vehicles: An overview of developments and challenges // Annual Reviews in Control. – 2016. – Vol. 41. – P. 71-93.
3. Jin X. Fault tolerant finite-time leader-follower formation control for autonomous surface ves-sels with LOS range and angle constraints // Automatica. – 2016. – Vol. 68 (1). – P. 228-236.
4. Villa J.L., Paez J., Quintero C., Yime E., and Cabrera J. Design and control of an Unmanned Surface Vehicle for Environmental Monitoring Applications // 2016 IEEE Colombian Confer-ence on Robotics and Automation (CCRA). – P. 1-5.
5. Xiang, X., Yu, C., Lapierre, L., Zhang, J., Zhang, Q. Survey on Fuzzy-Logic-Based Guidance and Control of Marine Surface Vehicles and Underwater Vehicles // International Journal of Fuzzy Systems. – 2018. – Vol. 20 (2). – P. 572-586.
6. Wang N., Sun J.-C., Er M.J., Liu Y.-C. A Novel Extreme Learning Control Framework of Un-manned Surface Vehicles // IEEE Transactions on Cybernetics. – 2016. –Vol. 46 (5). – P. 1106-1117.
7. Zheng Z., Sun L. Path following control for marine surface vessel with uncertainties and input saturation // Neurocomputing. – 2016. – Vol. 177 (12). – P. 158-167.
8. Peng Z., Wang J., Wang D. Distributed Maneuvering of Autonomous Surface Vehicles Based on Neurodynamic Optimization and Fuzzy Approximation // IEEE Transactions on Control Systems Technology. – 2018. – Vol. 26 (3). – P. 1083-1090. 9. Костюков В.А., Маевский А.М., Гуренко Б.В. Математическая модель надводного мини-корабля // Инженерный вестник Дона. – 2015. – № 3. 10. Pshikhopov V., Medvedev M. Position-Path Control of a Vehicle // Path Planning for Vehicles Operating in Uncertain 2D Environments. – 2017. – P. 1-23. 11. Kokotović P., Arcak M. Constructive nonlinear control: A historical perspective // Automatica. – 2001. – Vol. 37 (5). –C. 637-662.
12. Пшихопов В.Х., Медведев М.Ю. Групповое управление движением мобильных роботов в неопределенной среде с использованием неустойчивых режимов // Труды СПИИРАН. – 2018. – Вып. 60. – C. 39-63. 13. Lee C.C. Fuzzy Logic in Control Systems: Fuzzy Logic Controller // IEEE Transactions on Sys-tems, Man and Cybernetics. – 1990. – Vol. 20 (2). – P. 404-418 (Part I). – P. 419-435 (Part II). 14. Фельдбаум А.А. О распределении корней характеристического уравнения системы регу-лирования // Автоматика и телемеханика. – 1948. – № 4. – С. 253-279.
15. Li B., Xu Y., Liu Ch., Fan Sh., Xu W. Terminal navigation and control for docking an underactuated autonomous underwater vehicle // IEEE International Conference on Cyber Technology in Automation Control and Intelligent Systems. – 2015. – P. 25-30. 16. Shikai W., Hongzhang J., Lingwei M. Trajectory tracking for underactuated UUV using termi-nal sliding mode control // Chinese Control and Decision Conference. – 2016. – P. 6833-6837.
17. Londhe P.S., Dhadekar D.D., Patre B.M., Waghmare L.M. Non-singular terminal sliding mode control for robust trajectory tracking control of an autonomous underwater vehicle // Indian Control Conference. – 2017. – P. 443-449.
18. Кабанов С.А., Шалыгин А.С. Решение терминальной задачи управления движением лета-тельного аппарата с применением методов аналитической механики // Автоматика и те-лемеханика. – 1992. – № 8. – С. 39-45.
19. Пшихопов В.Х., Медведев М.Ю., Гуренко Б.В. Алгоритмы терминального управления подвижными объектами мультикоптерного типа // Мехатроника, автоматизация и управление. – 2019. –Т. 20, № 1. – С. 44-51. 20. Выгодский М.Я. Справочник по высшей математике. – М.: ACT: Астрель, 2006. – 991 с.
21. Pshikhopov V., Medvedev M. Position control of vehicles with multi-contour adaptation // Journal of Engineering and Applied Sciences. – 2018. – Vol. 13. – P. 8921-8928.
22. Пшихопов В.Х., Медведев М.Ю., Сиротенко М.Ю., Носко О.Э., Юрченко А.С. Проекти-рование систем управления роботизированных воздухоплавательных комплексов на ба-зе дирижаблей // Известия ТРТУ. – 2006. – № 3 (58). – С. 160-167.
Published
2019-05-08
Section
SECTION II. CONTROL AND SIMULATION SYSTEMS