MULTIPHYSICS SIMULATION IN ANSYS CFX AND SYSTEM COUPLING OF HEAT TRANSFER INSIDE HERMRTIC CASE OF STRAPDOWN INERTIAL NAVIGATION SYSTEM
Abstract
The article presents a numerical simulation of non-stationary convective-conductive heat
transfer of the strapdown inertial navigation system (SINS), developed in the JSC «CNIIAG».
The numerical simulation is carried out in the ANSYS Mechanical. The aim of the study is a comprehensive
analysis of heat exchange processes, which are characteristic to the device operation,
including mutual spatial influence of thermal powers on each other, as well as on the block of
sensitive elements. The simulation of heat transfer inside the hermetic case of the SINS is carried out for critical operating conditions in a strongly and weakly coupled consideration with a comparison
of both approaches. ANSYS Mechanical, CFX and System Coupling simulation modules
are chosen for program implementation of each approach. The k-e model of air turbulence with
implicit consideration of the effect in the boundary layers and diffusion correction in shear flows is
chosen for this approach. External heat exchange with ambient air is considered by setting convective
boundary conditions on the external surfaces of the SINS, considering their orientation.
To obtain numerical values of the heat transfer coefficients, the orientation of each surface in
space is taken into account by using the appropriate coefficient. The presence of irregularities on
the surfaces of the SINS in the contacts between solid components is considered by using the calculation
of thermal resistances of the actual contact and intercontact layer. The simulation results
of deformed state of SINS structural system, resulting from the action of a non-symmetric thermal
field, is presented. The analysis of the obtained graphs is carried out. Stiffness indicators of the
SINS structural system is defined as angles of deviation of sensitivity axes caused by thermal deformations.
The obtained results make it possible to evaluate the engineering solutions for the
quality of heat removal from the elements of the PCBs, bypassing the sensitive elements of the
device, adopted at the stage of product layout.
References
raketnykh kompleksov Sukhoputnykh voysk [Fundamentals of the theory of control systems of
high-precision missile systems of the Ground Forces]. Moscow: MGTU im. N.E. Baumana, 2001.
2. Bromberg P.V. Teoriya inertsial'nykh navigatsionnykh system [Theory of inertial navigation
systems]. Moscow: Nauka, 1979, 296 p.
3. Lipton A. Vystavka inertsial'nykh sistem na podvizhnom osnovanii [Exhibition of inertial systems
on a movable base]. Moscow: Nauka, 1971.
4. Salychev O.S. Applied Inertial Navigation: Problems and Solutions. Moscow: BMSTU Press, 2004.
5. Medel'tsev A.A., Frolov A.V., Smirnov S.V. Chislennoe modelirovanie zhestkosti i prochnosti
nesushchikh konstruktsiy perspektivnoy BINS pod deystviem kompleksa
termomekhanicheskikh faktorov [Numerical modeling of stiffness and strength of load-bearing
structures of promising BINS under the action of a complex of thermomechanical factors], Sb.nauchnykh trudov «Nauka i tekhnologii»: Mater. XLI Vserossiyskoy konferentsii,
posvyashchennoy 60-letiyu poleta Yu.A. Gagarina v kosmos [Collection of scientific papers
"Science and Technology": Mater. XLI All-Russian Conference dedicated to the 60th anniversary
of Yuri Gagarin's flight into space]. Moscow: RAN, 2021.
6. Medel'tsev A.A., Savvateev D.O., Titkov E.I. i dr. Opyt optimizatsii konstruktsii samopritselivayushcheysya
BINS vysokomanevrennogo letatel'nogo apparata [Experience in optimizing
the design of a self-aiming BINC of a highly maneuverable aircraft], Izvestiya Tul'skogo
gosudarstvennogo universiteta. Tekhnicheskie nauki [Proceedings of Tula State University.
Technical sciences], 2021, Issue 1
7. Frolov A.V., Smirnov S.V., Popov E.A. Issledovaniya vliyaniya teploty na stabil'nost' osey
nesushchey sistemy bloka akselerometrov BINS [Studies of the influence of heat on the stability
of the axes of the carrier system of the BINS accelerometer block], XXVII Sanktpeterburgskaya
mezhdunarodnaya konferentsiya po integrirovannym sistemam [XXVII St. Petersburg
International Conference on Integrated Systems], 2020.
8. ANSYS CFX 2021 R1 User Guide. August 2021. ANSYS Inc.
9. ANSYS Mechanical 2021 R1 User Guide. August 2021. ANSYS Inc.
10. Lutts M. Izuchaem Python, mnogotom [Learning Python, multi-volume]. 5 ed.: transl. from
engl. Saint Petersburg: OOO «Dialektika», 2019.
11. Lykov A.V. Teplomassoobmen (Spravochnik) [Heat and mass transfer (Directory)]. 2 ed. Moscow:
Energiya, 1978, 480 p.
12. ANSYS Meshing 2021 R1 User Guide. August 2021. ANSYS Inc.
13. Kukhtin A.S. Opredelenie koeffitsienta teplootdachi obraztsov dlya eksperimental'nykh
issledovaniy usloviy teplovogo samovozgoraniya [Determination of the heat transfer coefficient
of samples for experimental studies of thermal spontaneous combustion conditions],
Pozharovzryvobezopasnost'. Ser. Protsessy goreniya [Fire and explosion safety. Ser. Gorenje
processes], 2004, No. 2.
14. Isaev S.I., Kozhinov I.A., Kofanov V.I. i dr. Teoriya teplomassoobmena: uchebnik dlya
tekhnicheskikh universitetov i vuzov [Theory of heat and mass transfer: textbook for technical
universities and universities], ed. by A.I. Leont'eva. 2 ed. Moscow: Izd-vo MGTU im.
N.E. Baumana, 1997, 683 p.
15. ANSYS CFX 2021 R1 Theory Guide. August 2021. ANSYS Inc.
16. Dul'nev G.N., Parfenov V.G., Sigalov A.V. Metody rascheta teplovogo rezhima priborov
[Methods of calculating the thermal regime of devices]. Moscow: Radio i svyaz', 1990, 312 p.
17. Popov V.M. Teploobmen v zone kontakta raz"emnykh i neraz"emnykh soedineniy [Heat exchange
in the contact zone of detachable and non-removable joints]. Moscow: Energiya, 1971, 216 p.
18. Madera A.G. Matematicheskoe modelirovanie konvektivnogo teploperenosa v elektronnykh
ustroystvakh [Mathematical modeling of convective heat transfer in electronic devices],
Programmnye produkty i sistemy [Software products and systems], 2011.
19. Rotkop L.L., Spokoynyy Yu.E. Obespechenie teplovykh rezhimov pri konstruirovanii
radioelektronnoy apparatury [Provision of thermal modes in the design of radio-electronic
equipment]. Moscow: Sov. radio, 1976.
20. Volovikov V.V., Dekterev M.L., Kofanov Yu.N. i dr. Issledovanie teplovykh kharakteristik REA
s primeneniem programmnogo kompleksa TRiANA: monografiya [Investigation of thermal
characteristics of REA using the TRiANA software package: monograph]. Moscow: Izd-vo
«DMK Press», 2014.