DIGITAL SIGNAL PROCESSING IN A PASSIVE MULTI-POSITION RADAR, CREATED ON THE BASIS OF THE UAV GROUPING

  • I.I. Markovich Research and Design Bureau of Digital Signal Processing Southern Federal University
  • Е. Е. Zavtur Research and Design Bureau of Digital Signal Processing Southern Federal University
  • А. I.
Keywords: Passive radar, determination of coordinates, source of radio emission, differencerangefinder method, digital signal processing, unmanned aerial vehicle

Abstract

The expediency of creating a passive multi-position radar based on a grouping of unmanned
aerial vehicles is substantiated. The variant of building of such radar is proposed, the main technical
problems of the sonar developing are evaluated and possible ways to overcome them areconsidered. It is shown that for detecting aerial targets and determining their coordinates from
the radio emission of on-board equipment, the difference-rangefinder method is the most promising
as it does not depend on signal modulation and is potentially resistant to interference. For
small-sized UAV for transmitting information over open radio channels, the typical frequency
ranges are 2.4 and 5.0 GHz. A block diagram of a passive multi-position radar has been developed,
including digital shapers of the quadrature components of the received signal, blocks for
detecting and determining the coordinates of the target. The main parameters are calculated and
analytical expressions of digital signal processing algorithms for detecting and determining the
coordinates of the target are given. A stroboscopic effect is used in the digital quadrature component
shaper, which allows for bandpass signals to select the sampling frequency not by the upper
boundary frequency of the spectrum, but by its width, which significantly reduces the requirements
for the performance of the ADC and the DSP devices following it. The complex envelopes of the
detected signals are generated by the method of digital generation in the time domain using digital
low-frequency filters. The detection of signals is performed by an energy detector, the advantages
of which are simplicity of implementation and operability in the absence of a priori information
about the received signal. To determine the coordinates of the radio source, signal delays are
calculated between pairs of signals received by three UAV from a multi-position radar, which are
determined by the maximum modulo values of the mutual correlation functions of the signals in
these pairs. It is shown that the proposed algorithms are well adapted to the processing of possible
sources of radio emission on board small-sized UAV. It is established that the required performance
of the radar computer for real-time operation does not exceed 84.62 GFLOPS. The design
of an on-board antenna module of a passive multi-position radar in the form of a microstrip reconfigurable
antenna, tunable in frequency and polarization, is proposed.

References

1. Chernyak V.S. Mnogopozitsionnaya radiolokatsiya [Multi-position radar]. Moscow: Radio i
svyaz', 1993, 416 p.
2. Karavaev V.V., Sazonov V.V. Statisticheskaya teoriya passivnoy lokatsii [Statistical theory of
passive location]. Moscow: Radio i svyaz', 1987, 240 p.
3. Il'in E.M., Klimov A.E., Pashchin N.S., Polubekhin A.I., Cherevko A.G., Shumskiy V.N.
Passivnye lokatsionnye sistemy. Perspektivy i resheniya [Passive location systems. Prospects
and solutions], Vestnik SibGUTI [Bulletin of SibGUTI], 2015, No. 2, pp. 7-20.
4. Markovich I.I., Zavtur E.E. Algoritm opredeleniya koordinat tseley raznostno-dal'nomernym
metodom s uchetom netochnostey ustanovki priemnykh gidroakusticheskikh antenn [Algorithm for
determining the coordinates of targets by the difference-range-measuring method, taking into account
the inaccuracies of the installation of receiving hydroacoustic antennas], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2017, No. 8, pp. 162-171.
5. Mar'ev A.A., Markovich I.I., Zavtur E.E. Issledovanie pogreshnostey raznostno-dal'nomernogo
metoda passivnoy lokatsii [Research of errors of the difference-range-measuring method of
passive location], Izluchenie i rasseyanie elektromagnitnykh voln: Tr. Mezhdunarodnoy
nauchnoy konferentsii «Izluchenie i rasseyanie elektromagnitnykh voln» IREMV-2015 [Radiation
and scattering of electromagnetic waves: Proceedings of the International Scientific Conference
"Radiation and Scattering of Electromagnetic Waves" IREMV-2015]. Rostov-on-Don:
Izd-vo YuFU, 2015, pp. 391-395.
6. Syten'kiy V.D. Passivnaya lokatsiya na osnove amplitudnykh izmereniy [Passive location based
on amplitude measurements], Izvestiya vuzov Rossii. Radioelektronika [Izvestiya of Russian
universities. Radio electronics], 2011, Issue 1, pp. 69-76.
7. Syten'kiy V.D., Bakaev A.V. Opredelenie koordinat ob"ekta po izvestnym parametram
istochnikov izlucheniya [Determination of object coordinates by known parameters of radiation
sources], Vestnik vozdushno-kosmicheskoy oborony [Bulletin of Aerospace Defense],
2018, No. 3 (19), pp. 94-101.
8. Syten'kiy V.D., Markovich I.I., Zavtur E.E. Opredelenie koordinat istochnikov izlucheniya v
passivnykh RLS amplitudnym metodom [Determination of the coordinates of radiation sources
in passive radars by the amplitude method], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2021, No. 1 (218), pp. 72-81.
9. Il'in E.M., Savost'yanov V.Yu., Samarin O.F., Cherevko A.G. Sostoyanie i perspektivy
sozdaniya mnogodiapazonnykh malogabaritnykh radiolokatsionnykh sistem [The state and
prospects of creating multi-band small-sized radar systems], Vestnik SibGUTI [Bulletin of
SibGUTI]], 2015, No. 2, pp. 156-163.
10. Il'in E.M., Krivov Yu.N., Polubekhin A.I., Krenev A.N., Cherevko A.G. Mnogofunktsional'nyy
bortovoy RLK s konformnoy antennoy sistemoy dlya bespilotnykh letatel'nykh apparatov
maloy dal'nosti [Multifunctional airborne radar with conformal antenna system for short-range
unmanned aerial vehicles], Vestnik SibGUTI [Bulletin of SibGUTI], 2018, No. 3, pp. 79-88.
11. Chandra R.S., Breheny S.H., D’Andrea R. Antenna array synthesis with clusters of unmanned
aerial vehicles, Automatica, 2008, No. 44, pp. 1976-1984.
12. Kanashchenkov A.A. Tekhniko-ekonomicheskiy analiz razrabotki mnogofunktsional'noy
radiolokatsionnoy stantsii dlya bespilotnogo letatel'nogo apparata [Technical and economic
analysis of the development of a multifunctional radar station for an unmanned aerial vehicle],
Uspekhi sovremennoy nauki i obrazovaniya [Successes of modern science and education],
2016, Vol. 2, No. 8, pp. 132-135.
13. Tierney B.B., Rodenbeck C.T. 3D-Sensing MIMO Radar for UAV Formation Flight and Obstacle
Avoidance, 2019 IEEE Radio and Wireless Symposium (RWS), IEEE, 2019, pp. 1-3.
14. Gus'kov Yuriy, Savost'yanov Vladimir, Samarin Oleg. Mnogofunktsional'nye malogabaritnye
bortovye RLS. Kriticheskie tekhnologii sozdaniya [Multifunctional small-sized airborne radars.
Critical creation technologies], Radioelektronnye tekhnologii [Radioelectronic technologies],
2018, No. 1, pp. 40-46.
15. Savost'yanov V.Yu., Karpov O.A., Efimov A.V. Mnogofunktsional'naya malogabaritnaya RLS
Kudiapazona dlya legkogo BLA [Multifunctional small-sized Ku-band radar for light UAV],
Vserossiyskie otkrytye Armandovskie chteniya [All-Russian Open Armand readings], 2019,
pp. 389-394.
16. Kim J. et al. Design and Implemetation of Compact 77 GHz Synthetic Aperture Radar for
Drone Based Applications, 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar
(APSAR). IEEE, 2019, pp. 1-5.
17. Markovich I.I. Realizatsiya algoritmov tsifrovogo formirovaniya kvadraturnykh
sostavlyayushchikh v lokatsionnykh kompleksakh razlichnogo naznacheniya [Implementation
of algorithms for digital formation of quadrature components in location complexes for various
purposes], Vestnik komp'yuternykh tekhnologiy [Bulletin of Computer Technologies], 2006,
No. 6, pp. 16-21.
18. Markovich I.I. Tsifrovaya obrabotka signalov v sistemakh i ustroystvakh: monografiya [Digital
signal processing in systems and devices: monograph]. Rostov-on-Donu: Izd-vo YuFU, 2012,
236 p.
19. Vaganova A.A., Kisel' N.N., Panychev A.I. Napravlennye i polyarizatsionnye svoystva
mikropoloskovoy rekonfiguriruemoy antenny, perestraivaemoy po chastote i polyarizatsii [Directional
and polarization properties of a microstrip reconfigurable antenna, tunable in frequency
and polarization], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2021, No. 2 (219), pp. 74-83.
20. Vaganova A.A., Kisel N.N., Panychev A.I. Microstrip reconfigurable antenna with tunable frequency
and polarization, Conference Proceedings – 2021 Radiation and Scattering of Electromagnetic
Waves, RSEMW 2021, 2021, pp. 127-130.
Published
2022-04-20
Section
SECTION I. PROSPECTS FOR THE USE OF ROBOTIC SYSTEMS