DISCRETE-EVENT METHOD COMPUTATIONS ORGANIZING FOR PROCESSING LARGE SPARSE UNSTRUCTURED MATRIXES ON RCS

  • A.V. Podoprigora Southern Federal University
Keywords: Reconfigurable computing systems, high-performance computing systems, sparse matrix, large sparse unstructured matrix, addition sparse matrices, discrete-event modeling, queuing systems, discrete-event computing

Abstract

Increasing models complexity objects and processes study, in different sphere of science and
technology, set up plenty issues to necessary to use high-performance computing systems. Arrays
matrix processing by cluster multiprocessor computing systems in conjunction special methods
aimed at organizing parallel computations, basically obtain computing performance system is
quite high. However, that computational efficiency is not observed for all types of matrices. Matrix
structure be in a position contain large amount of insignificant elements, large dimension and
unstructured portrait. Calculation execute for described kind of matrices on cluster multiprocessorcomputing system couldn't achieve close peak performance. Considering that processing methods
leave out the complex structure of the matrix being processed. As a result, the performance of the
system is significantly reduced. The development of cluster MCS methods doesn't allow for full
ensure high performance for class of problems processing of large sparse unstructured matrices.
Rigid architecture of processor commutation net doesn’t take into account the peculiarities of such
matrices, and lead to non-uniformity loading processor. To achieve performance close the peak
for tasks large sparse unstructured matrices processing necessary to use reconfigurable computing
systems. RCS architecture allows adapting computation structure to the problem solved. This
makes it possible to organize pipeline processing, such a way that computational resource RCS
used only for informational significant operations. In addition using generally accepted methods
for structural organization of high-performance computing for RCS, it is necessary to develop a
format for storing and transferring large sparse unstructured matrices, to determine the principles
of constructing basic matrix macro-operations and the possibility of organizing composite discrete-
event matrix functions for solving applied problems. Сconsequently method founding laid
allows organizing computations operands, which are large sparse unstructured matrices. The
application this method for organizing computations can significantly increase productivity, and
provide an increase in the efficiency of such a system.

References

1. Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of mathematical
physics]. Moscow: Izd-vo Moskovskogo universiteta, 1999. 6 ed., 798 p. Nauchnaya
biblioteka dissertatsiy i avtoreferatov disserCat [Dissercat Scientific Library of Dissertations
and Abstracts]. Available at: http://www.dissercat.com/content/razrabotka-i-issledovanieekonomichnykh-
algoritmov-resheniya-setochnykh-zadach-naklastere-r#ixzz5WvO2qG2e (accessed
23 November 2018).
2. Kolodziej Scott P., Mohsen Aznaveh, Matthew Bullock, Jarrett David, Davis Timothy A., Matthew
Henderson, Yifan Hu, and Read Sandstrom. The SuiteSparse Matrix Collection Website
Interface, Journal of Open Source Software 4, 35 (March 2019), pp. 1244-1248. DOI:
https://doi.org/10.21105/joss.01244 (accessed 02 December 2021).
3. Параллельные вычисления CUDA, NVIDIA Corporation, 2018. Available at:
http://www.nvidia.ru/object/cuda-parallel-computing-ru.html (accessed 14 December 2021).
4. Chungz E.S., Davisz J.D., Kestury S. An FPGA Drop-In Replacement for Universal Matrix-
Vector Multiplication. Portland: Workshop on the Intersections of Computer Architecture and
Reconfigurable Logic, 2012, pp. 1-6.
5. Yang C., Buluc A., Owens J. Design Principles for Sparse Matrix Multiplication on the GPU,
Turin: International European Conference on Parallel and Distributed Computing, 2018, pp. 12.
6. Georgopoulos L., Sobczyk A., Christofidellis D., Dolfi M., Auer C., Staar P., Bekas C. Enhancing
multi-threaded sparse matrix multiplication for knowledge graph oriented algorithms and analytics
IBM Research. Zurich Säumerstrasse 4 CH-8803 Rüschlikon Switzerland, 2019, 11 p.
7. Podoprigora A.V. Metody i sredstva obrabotki bol'shikh razrezhennykh matrits na
rekonfiguriruemoy vychislitel'noy sisteme [Methods and means of processing large sparse matrices
on a reconfigurable computing system], XVI Ezhegodnaya molodezhnaya nauchnaya
konferentsiya «YUg Rossii: vyzovy vremeni, otkrytiya, perspektivy»: Mater. konferentsii (g.
Rostov-na-Donu, 13–28 aprelya 2020 g.) [XVI Annual Youth Scientific Conference "South of
Russia: challenges of the time, discoveries, prospects": materials of the conference (Rostovon-
Don, April 13-28, 2020)]. Rostov-on-Don: Izd-vo YuNTS RAN, 2020, 168 p. ISBN 978-5-
4358-0196-5.
8. Kunchum R. On Improving Sparse Matrix-Matrix Multiplication on GPUs (Thesis). The Ohio
State University, 2017, pp. 36-42 Available at: https://etd.ohiolink.edu/!etd.send_file? accession=
osu1492694387445938&disposition=inline.
9. Sorokin D.A. Metody resheniya zadach s peremennoy intensivnost'yu potokov dannykh na
rekonfiguriruemykh vychislitel'nykh sistemakh: disc. … kand. tekhn. nauk [Methods for solving
problems with variable intensity of data flows on reconfigurable computing systems: cand.
of eng. sc. diss.]: 05.13.11 protected: 15.06.12: approved: 11.03.13. Taganrog, 2013, 168 p.
005043774.
10. Kalyaev I.A., Levin I.I., Semernikov E.A., Shmoylov V.I. Rekonfiguriruemye mul'tikonveyernye
vychislitel'nye struktury [Reconfigurable multiconveyor computing structures], under the general
ed. by I.A. Kalyaeva. 2nd ed. revised and expanded. Rostov-on-Don: Izd-vo YuNTS
RAN, 2009б 344 p.
11. Podoprigora A.V., Chekina M.D. Reshenie razrezhennykh SLAU bol'shoy i sverkhbol'shoy
razmernosti mnogosetochnym metodom na RVS [The solution of sparse SLOWS of large and
extra-large dimensions by the multigrid method on RVS], Izvestiya YuFU. Tekhnicheskie
nauki [Izvestiya SFedU. Engineering Sciences], 2018, No. 8 (202), pp. 212-221.
12. Dordopulo A.I. Kalyaev I.A., Levin I.I., Semernikov E.A. Semeystvo mnogoprotsessornykh
vychislitel'nykh sistem s dinamicheski perestraivaemoy arkhitekturoy [A family of multiprocessor
computing systems with dynamically tunable architecture], Mnogoprotsessornye
vychislitel'nye i upravlyayushchie sistemy: Mater. nauchno-tekhnicheskoy konferentsii [Multiprocessor
computing and control systems: Proceedings of the scientific and technical conference].
Taganrog, 2007, pp. 11-17.
13. Kalyaev I.A., Levin I.I., Semernikov E.A., Dordopulo A.I. Rekonfiguriruemye vychislitel'nye
sistemy na osnove PLIS semeystva VIRTEX-6 [Reconfigurable computing systems based on
FPGAs of the VIRTEX-6 family], Parallel'nye vychislitel'nye tekhnologii (PAVT’2011):
Tr. mezhdunarodnoy nauchnoy konferentsii [Parallel computing technologies (PAVT'2011):
Proceedings of the International Scientific Conference], 2011, pp. 203-211.
14. Guzik V.F., Kalyaev I.A., Levin I.I. Rekonfiguriruemye vychislitel'nye sistemy [Reconfigurable
computing systems], ed. by I.A. Kalyaeva. Taganrog: Izd-vo YuFU, 2016, 472 p.
15. Kalyaev A.V., Levin I.I. Modul'no-narashchivaemye mnogoprotsessornye sistemy so
strukturno-protsedurnoy organizatsiey vychisleniy [Modular-stackable multiprocessor systems
with structural and procedural organization of computing]. Moscow: Yanus-K, 2003, 380 p.
16. Pelipets A.V. Metody i sredstva resheniya zadach lineynoy algebry na vysokoproizvoditel'nykh
rekonfiguriruemykh vychislitel'nykh sistemakh: diss. … kand. tekhn. nauk [Methods and
means of solving linear algebra problems on high-performance reconfigurable computing systems:
cand. of eng. sc. diss.]. Taganrog, 2016, 199 p.
17. Podoprigora A.V. Upravlenie protsessom obrabotki razrezhennykh matrits v diskretnosobytiynykh
matrichnykh operatsiyakh [Managing the process of processing sparse matrices in
discrete-event matrix operations], XIV Vserossiyskaya mul'tikonferentsiya po problemam
upravleniya (MKPU-2021): Mater. XIV mul'tikonferentsii (Divnomorskoe, Gelendzhik, 27
sentyabrya – 2 oktyabrya 2021 g.) [XIV All-Russian Multi-conference on Management Problems
(MCPU-2021): Materials of the XIV multi-conference (Divnomorskoye, Gelendzhik,
September 27 - October 2, 2021)]: In 4 vol. Vol. 2, Editorial board: I.A. Kalyaev, V.G.
Peshekhonov i dr. Rostov-on-Don; Taganrog: Izd-vo YuFU, 2021, pp. 276-278. ISBN 978-5-
9275-3846-1.
18. Kleynrok L. Teoriya massovogo obsluzhivaniya [Theory of queuing]. Moscow: Mashinostroenie,
1979, 432 p.
19. Podoprigora A.V., Sorokin D.A. Upravlenie potokami dannykh pri reshenii bol'shoy
razrezhennoy slau mnogosetochnym metodom na rekonfiguriruemykh vychislitel'nykh
sistemakh [Managing data flows when solving a large sparse SLA by a multigrid method on
reconfigurable computing systems], XII mul'tikonferentsiya po problemam upravleniya
(MKPU-2019): Mater. XII mul'tikonferentsii (Divnomorskoe, Gelendzhik, 23–28 sentyabrya
2019 g.) [XII Multi-conference on Management Problems (MCPU-2019): Materials of the XII
multi-conference (Divnomorskoye, Gelendzhik, September 23-28, 2019)]: In 4 vol. Vol. 3, Editorial
board: I.A. Kalyaev, V.G. Peshekhonov i dr. Rostov-on-Don, Taganrog: Izd-vo YuFU,
2019, pp. 120-122. ISBN 978-5-9275-3188-2.
20. Konnov A.L., Ushakov Yu.A. Metody rascheta pokazateley proizvoditel'nosti setey EVM s
neodnorodnym trafikom [Methods for calculating performance indicators of computer networks
with heterogeneous traffic]. Orenburg: OGU, 2013, pp. 10-16.
Published
2022-03-02
Section
SECTION III. INFORMATION PROCESSING IN DISTRIBUTED, RECONFIGURABLE AND NEURAL NE