AUTUNOMOUS PLANNING OF OBSERVATION TASKS IN SATELLITE CONSTELLATION

  • O.V. Karsaev The Federal State Institution of Science St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS)
Keywords: Satellite constellation, autonomous planning, delay and disruption tolerant network

Abstract

The use of autonomous planning is one of the main conditions for maximizing the potential of satellite constellation. Autonomous planning in this case implies the need for information inter-action between satellites and performing local calculations on satellites in accordance with the interaction schemes used. The paper deals with an approach in which autonomous planning in-volves the use of the results of ground-based computing. As a result of these calculations, a formal description of the execution scenario is developed for each incoming order. Scenarios can involve both single and multiple observations. In the case of many observations, form of scenario descrip-tion includes a possibility for specifying the logical conditions that determine the order of observa-tion execution. As a result of ground-based computing all time windows when observation can be performed by any of the satellites of the group are calculated. Lists of these time windows are considered as input data for the implementation of the information interaction scheme. According-ly, the autonomous planning of each observation is reduced to the following scenario. In a certain sequence, the possibility of local observation planning is transferred to the respective satellites. The order of local planning is determined according to the order of time windows in the list. The time window considered in the local planning process is an additional constraint in the planning. If an observation is not planned, the local planning capability is transferred to the next satellite. The effectiveness of information interaction in the group of satellites, and as a consequence – the effectiveness of autonomous planning, critically depend on the capabilities of the network layer, in particular on the time of data transmission between the nodes of the network. In this regard, the paper also discusses a possible approach to the organization of a communication network in a group of satellites. This approach is based on the DTN (Delay and Disruption Tolerant Network-ing) technology and CGR (Contact Graph Routing) approach to routing messages in the network.

References

1. Maillard A. et al. Ground and board decision-making on data downloads // Proceedings of 25th International Conference on Automated Planning and Scheduling. – 2015. – P. 273-281.
2. Lenzen C. et al. Onboard Planning and Scheduling Autonomy within in Fire Bird Mission // Pro-ceedings of the 14-th International Conference on Space Operations. – 2014. AIAA 2014 – 1759.
3. Kennedy A. et al. Automated Resource-Constrained Science Planning for the MiRaTA Mission // Proceedings of the AIAA/USU Conference on Small Satellites. – 2015. SSC15-6-37.
4. Herz E. et al. Onboard Autonomous Planning System // Proceedings of the 14-th International Conference on Space Operations. – 2014. AIAA 2014 – 1783.
5. Li J., Chi Y. Planning and Scheduling of an Agile EOS Combining On ground and On-board Decisions // IOP Conference. Series: Materials Science and Engineering. – 2018. – Vol. 382. 032023. – http://iopscience.iop.org/article/10.1088/1757-899X/382/3/032023.
6. Advanced Exploration Systems. – https://www.nasa.gov/directorates/heo/aes/index.html.
7. Соколов Н.Л. и др. Основные принципы создания космической информационной сети, устойчивой к разрывам и задержкам в каналах связи // Лесной вестник. Системный ана-лиз, управление и обработка информации в космической отрасли. – 2015. – № 3. – С. 137-144.
8. Caini C. 2 - Delay-tolerant networks (DTNs) for satellite communications // Advances in De-lay-Tolerant Networks (DTNs) / Ed. J. Rodrigues. Oxford: Woodhead Publishing, 2015. – P. 25-47.
9. Zhang Z. 8 - Opportunistic routing in mobile ad hoc delay-tolerant networks (DTNs) // Ad-vances in Delay-Tolerant Networks (DTNs) / Ed. J. Rodrigues. Oxford: Woodhead Publishing, 2015. – P. 159-172.
10. Rodrigues J., Soares V. 1 - an introduction to delay and disruption-tolerant networks (dtns) // Advances in Delay-Tolerant Networks (DTNs) / Ed. J. Rodrigues. Oxford: Woodhead Publish-ing, 2015. – P. 1-21.
11. Araniti G. et al. Contact Graph Routing in DTN Space Networks: Overview, Enhancements and Performance // IEEE Communication Magazine. – 2015. – P. 38-46.
12. Birrane E., Burleigh S., Kasch N. Analysis of the contact graph routing algorithm: Bounding interplanetary paths // Acta Astronautica. – 2012. – No. 75. – P. 108-119.
13. Fraire J. A. et al R. Assessing Contact Graph Routing Performance and Reliability in Distrib-uted Satellite Constellations // Journal of Computer Networks and Communications. – 2017. – Vol. Article ID 2830542. – 18 p.
14. Caini C., Firrincieli R. Application of Contact Graph Routing to LEO satellite DTN commu-nications // IEEE International Conference on Communications. – 2012. – P. 3301-3305.
15. Herz E. EO and SAR Constellation Imagery Collection Planning // Proceedings of the 14-th SpaceOps Conference 2014 (AIAA 2014-1728).
16. Iacopino C., Harrison S. and Brewer A. Mission Planning Systems for Commercial Small-Sat Earth Observation Constellations // Proceedings of the 9th International Workshop on Plan-ning and Scheduling for Space (IWPSS). – 2015. – P. 45-52.
17. Ковтун В.С., Строченкин А.В., Фролов В.Н. Выбор оптимальных вариантов маршрутов съемок для космической системы дистанционного зондирования Земли // Космическая техника и технология. – 2014. – № 3 (6). – C. 57-63.
18. Mclaren D. et al. Scheduling results for the THEMis observation scheduling tool // In 7th In-ternational Workshop on Planning and Scheduling for Space, IWPSS-11, 2011. – https://ai.jpl.nasa.gov/public/papers/mclaren_iwpss2011_schedulingresults.pdf.
19. Knight R., McLaren D. and Hu S. Planning coverage campaigns for mission design and analy-sis: Clasp for the proposed DESDyni mission // In Proceedings International Symposium on Artificial Intelligence, Robotics, and Automation for Space. 2012. – https://ai.jpl.nasa.gov /public/papers/knight_isairas2012_planning.pdf.
20. Knight R. Area Coverage Planning for Sub-dividable Framing Instruments // Intl Symposium on Artificial Intelligence, Robotics, and Automation for Space, 2014. – https://ai.jpl.nasa.gov /public/papers/knight_isairas2014_area.pdf.
21. Карсаев О.В. Имитационное моделирование автономного управления группировкой ма-лых спутников // Известия ЮФУ. Технические науки. – 2018. – № 1 (195). – С. 140-154.
Published
2019-05-08
Section
SECTION II. CONTROL AND SIMULATION SYSTEMS