CIRCUIT AND ELECTRODYNAMIC SIMULATION OF THE OSCILLATORY PROCESS OF ENERGY REDISTRIBUTION IN A BIPOLAR TRANSISTOR

  • К. А. Boikov MIREA – Russian Technological University
Keywords: Bipolar transistor, signal radio profile, technical diagnostics, correlation analysis, radio engineering unit, free vibrations

Abstract

The advantage of the promising method of passive radiosensor technical diagnostics
(PRTD) over the currently existing methods for determining the technical condition (vibrometry,
thermal control, JTAG-testing, optical control) are: no inertia, no processor time, no galvanic
contact with the object of study. In modern scientific literature, almost no attention is paid to numerical
models of electronic devices, including those based on bipolar transistors (BPT), which
describe the process of oscillatory redistribution of energy and radiation used in PRTD. Therefore,
the purpose of this study is to develop the PRTD method through the development, analysis
and comparison of circuit and electrodynamic models of oscillatory energy redistribution in the
BPT. The paper presents and analyzes simplified circuit and electrodynamic models of oscillatory
redistribution of energy in the BPT. The parameters of the models are calculated signal radio
profiles (SRP) are obtained for the electrical component of electromagnetic radiation created by
the radio-electronic unit itself, built on the BPT. Methods for adjusting the reference parameters
depending on the actual conditions for switching on the BPT are shown. It has been established
that the cross-correlation function of the SRP obtained as a result of circuit and electrodynamic
modeling is not lower than 0.93, which indicates a high similarity of the presented models. In
practice, the use of the developed models in the analysis of SRP obtained by recording the intrinsic
emissions of radio engineering components of electronic devices will allow us to determine the
operating mode of the BPT and its speed with a sufficiently high accuracy. This analysis can be
used in the PRTD, indicating a malfunction of the signal circuits, or degradation of the parameters
of the element itself in the early stages

References

1. Eremenko V.T. Tekhnicheskaya diagnostika elektronnykh sredstv [Technical diagnostics of
electronic means]. Orel: FGBOU VPO «Gosuniversitet - UNPK», 2012, 157 p.
2. Boykov K.A., Kostin M.S., Kulikov G.V. Radiosensornaya diagnostika tselostnosti signalov
vnutriskhemnoy i periferiynoy arkhitektury mikroprotsessornykh ustroystv [Radiosensory diagnostics
of signal integrity of in-circuit and peripheral architecture of microprocessor devices],
Rossiyskiy tekhnologicheskiy zhurnal [Russian Technological Journal], 2021, No. 9 (4),
pp. 20-27. Available at: https://doi.org/10.32362/2500-316X-2021-9-4-20-27.
3. Boykov K.A., Kostin M.S. Metod radiosensornoy tekhnicheskoy diagnostiki mikroprotsessornykh
ustroystv [Method of radiosensory technical diagnostics of microprocessor devices], Novye
tekhnologii vysshey shkoly. Nauka, tekhnika, pedagogika: Mater. Vserossiyskoy nauchnoprakticheskoy
konferentsii «Nauka – Obshchestvo – Tekhnologii – 2021» (Rossiya, Moskva, 26
marta 2021 goda) [New technologies of higher education. Science, technology, pedagogy: Materials
of the All-Russian Scientific and Practical Conference "Science - Society - Technologies - 2021"
(Russia, Moscow, March 26, 2021)]. Moscow: Moskovskiy Politekh, 2021, pp. 119-123.
4. Boykov K.A. Metod radiovolnovoy autentifikatsii mikroprotsessornykh ustroystv: pat. 2755153
Ros. Federatsii MPK H04L 9/32 [Method of radio wave authentication of microprocessor devices:
pat. 2755153 Ros. IPC Federation H04L 9/32], applicant and copyright holder Boykov
K.A. No. 2021103796; announced on 16.02.2021; published on 13.09.2021, Bull. No. 26.
5. Evstifeev A.V. Mikrokontrollery AVR semeystv Mega. Rukovodstvo pol'zovatelya [AVR microcontrollers
of the Mega family. User Manual.]. Moscow: DMK, 2015, 588 p.
6. Boykov K.A. Opredelenie parametrov elektronnykh ustroystv metodom passivnoy radiosensornoy
tekhnicheskoy diagnostiki [Determination of parameters of electronic devices by the method of passive
radiosensory technical diagnostics], Izvestiya vysshikh uchebnykh zavedeniy Rossii.
Radioelektronika [News of higher educational institutions of Russia. Radio electronics], 2021,
No. 24 (6), pp. 63-70. Available at: https://doi.org/10.32603/1993-8985-2021-24-6-63-70.
7. Ravi Shankar Reddy G., Rameshwar Rao. Oscillatory-Plus-Transient Signal Decomposition
Using TQWT and MCA, Journal of electronic science and technology, June 2019, Vol. 17,
No. 2, pp. 135-151.
8. Khvalin A. L. Modeling 2T937 Bipolar Transistors Based on Experimental Static and Frequency
Characteristics, Measurement Techniques, 2018, Vol. 61, No. 8, pp. 831-835. DOI:
10.1007/s11018-018-1510-6.
9. Wang J. Liang S. [et al.]. An improved SPICE model of SiC BJT incorporating surface recombination
effect, IEEE Transactions on Power Electronics, 2019, Vol. 34, No 7, pp. 6794-
6802. DOI: 10.1109/TPEL.2018.2871594.
10. Gu J. Gaspard P. Counting statistics and microreversibility in stochastic models of transistors,
Journal of Statistical Mechanics: Theory and Experiment, 2020, Vol. 2020, No. 10, pp. 103206.
– DOI: 10.1088/1742-5468/abbcd5.
11. Evangeline C.S. Lenin A. Human health monitoring using wearable sensor, Sensor Review,
2019, Vol. 39, No. 3, pp. 364-376. DOI: 10.1108/SR-05-2018-0111.
12. Fairchild semiconductor BC546/547/548/549/550 datasheets. Available at: https://www.
sparkfun.com /datasheets/Components/BC546.pdf (accessed 16 January 2022).
13. Vostokov N.V., Revin M.V., Shashkin V.I. Microwave detector diodes based on InGaAs/
AlGaAs/GaAs heterostructures, Journal of Applied Physics, 2020, Vol. 127, No. 4, pp. 044503.
DOI: 10.1063/1.5131737.
14. Razevig V.D. Sistema skvoznogo proektirovaniya elektronnykh ustroystv Design Lab 8.0 [The
system of end-to-end design of electronic devices Design Lab 8.0]. Moscow: Solon, 1999, 698 p.
15. Kizimenko V.V., Ulanouski A.V. Comparative analysis of the various resonator models in the input
impedance calculation of the microstrip antennas, Telecommunications and Signal Processing
(TSP), 2016: Matherials of 39-th International Conference (Vienna, June 27-29, 2016).
16. Boykov K.A. Modelirovanie i analiz kolebatel'nogo pereraspredeleniya energii pri sobstvennykh
elektromagnitnykh izlucheniyakh v klyuchevykh radioelektronnykh skhemakh na MOPtranzistorakh
[Modeling and analysis of the vibrational redistribution of energy with its own electromagnetic
radiation in key electronic circuits on MOSFETs], Zhurnal radioelektroniki [Journal
of Radio Electronics], 2021, No. 6. Available at: https://doi.org/10.30898/1684-1719.2021.6.14
(accessed 25 November 2021).
17. Nauchno-tekhnicheskiy portal po radioelektronike “RadioProg”. Razdel «Kal'kulyatory» [Scientific
and technical portal on radio electronics "RadioProg". Section "Calculators"]. Available
at: https://radioprog.ru/calculator/list (accessed 11 January 2022).
18. Zemlyanukhin P.A. Issledovanie kharakteristik umnozhitelya chastoty garmonicheskikh
kolebaniy na baze ogranichitelya napryazheniya [nvestigation of the characteristics of a harmonic
frequency multiplier based on a voltage limiter], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2017, No. 5 (190), pp. 90-102.
19. Tkachenko F.A. Elektronnye pribory i ustroystva [Electronic devices and devices]. Moscow:
Infra-M, 2018, 156 p.
20. Basharin S.A. Teoreticheskie osnovy elektrotekhniki [Theoretical foundations of electrical
engineering]. Moscow: Akademiya, 2018, 192 p.
21. Bankov S.E., Gribanov A.N., Kurushin A.A. Elektrodinamicheskoe modelirovanie antennykh i
SVCh struktur s ispol'zovaniem FEKO [Electrodynamic modeling of antenna and microwave
structures using FEKO]. Moscow: One-Book, 2013, 423 p.
22. Bankov S.E., Kurushin A.A. Raschet izluchaemykh struktur s pomoshch'yu FEKO [Calculation
of radiated structures using FEKO]. Moscow: ZAO «NPP «RODNIK», 2008, 246 p.
23. Grigor'ev A.D. Metod vychislitel'noy elektrodinamiki [Method of computational electrodynamics].
Moscow: Fizmatlit, 2012, 432 p.
24. Akhiyarov V.V. Ispol'zovanie integral'nogo i differentsial'nogo metodov teorii difraktsii dlya
prognoza napryazhennosti polya nad zemnoy poverkhnost'yu [The use of integral and differential
methods of diffraction theory to predict the field strength above the Earth's surface],
Elektronnoe nauchno-tekhnicheskoe izdanie «Nauka i Obrazovanie», 2011 [Electronic scientific
and technical publication "Science and Education", 2011].
25. Boykov K.A. Razrabotka i issledovanie sistemy radioimpul'snoy regeneratsii dlya ustroystv
vysokoskorostnoy stroboskopicheskoy otsifrovki [Development and research of a radio pulse regeneration
system for high-speed stroboscopic digitization devices], Zhurnal radioelektroniki
[Journal of Radio Electronics], 2018, No. 3. Available at: http://jre.cplire.ru /jre/mar18/6/text.pdf.
(accessed 11 January 2022).
26. Kostin M.S., Shil'tsin A.V. Modelirovanie radiofotonnykh povtoriteley subnanosekundnykh signalov
s drobnym mul'tipleksirovaniem [Modeling of radiophoton repeaters of subnanosecond signals with
fractional multiplexing], Sb. tr. IV mezhdunarodnoy nauchno-prakticheskoy konf. «Aktual'nye
problemy i perspektivy razvitiya radiotekhnicheskikh i infokommunikatsionnykh sistem
(«Radioinfokom-2019») [Proceedings of the IV International Scientific and practical Conference
"Actual problems and prospects of development of radio engineering and infocommunication systems
("Radioinfocom-2019")]. Moscow: MIREA – Rossiyskiy tekhnologicheskiy universitet, 2019,
pp. 257-260.
Published
2022-03-02
Section
SECTION I. MODERN COMPUTING TECHNOLOGIES IN CONTROL AND MODELING TASKS